
ESC-TR-2003-056

Technical Report
1088

LLAMA (Lincoln Laboratory Advanced
MARTHA Applications) Software Manual

D.W. White

1 December 2003

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

Prepared for the Department of the Air Force
under Contract F19628-00-C-0002.

Approved for public release; distribution is unlimited.

20031216 18!

1

This report is based on studies performed at Lincoln Laboratory, a center for
research operated by Massachusetts Institute of Technology. This work was
sponsored by the Department of the Air Force, ESC/XPK, under Contract
F19628-0P-C-0002. Opinions, interpretations, conclusions, and recommendations
are those of the authors and are not necessarily endorsed by the United States Air
Force.

This report may be reproduced to satisfy needs of U.S. Government agencies.

The ESC Public Affaii-s Office has reviewed this report, and
itisreleasabletotheNationalTechnicallnformation Service,
where it will be available to the general public, including
foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Gary /I utlungian
Admin^jtative Contracting Officer
Plans and Programs Directorate
Contracted Support Management

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission has been granted by tine Contracting
Officer to destroy this document, when it is no
longer required by the using agency, according
to applicable security regulations.

Massachusetts Institute of Technology
Lincoln Laboratory

LLAMA (Lincoln Laboratory Advanced MARTHA Applications)
Software Manual

D.W. White

Group 601

Technical Report 1088

1 December 2003

Approved for public release; distribution is unlimited.

Lexington Massachusetts

f ;■

ABSTRACT

For the past 25 years or more, a number of staff members at MIT Lincoln Laboratory have made
extensive use of the API computer language to solve a variety of problems, primarily in the area of radio
frequency and microwave circuit design. This was aided and inspired by the availability of the MARTHA
software package, which is a collection of APL-based circuit analysis ftmctions developed by Professor
PaulPenfieldJr.atMIT.

The Lincoln Laboratory Advanced MARTHA Applications (or LLAMA for short) is a set of 15
workspaces (a collection of APL ftmctions) developed primarily in conjunction with MARTHA. Many of
the workspaces are an extension of MARTHA, and allow the use of new circuit elements or new types of
analysis. A number of workspaces are devoted to filter synthesis, using both lumped elements and
coupled microstrip transmission lines. Other workspaces are aimed toward RF system design, including
mixer-spur and dynamic-range analysis.

This manual is intended to provide more formal documentation for this resource than has
previously been available. It is hoped that it will allow new users to quickly make use of all that APL
and MARTHA have to offer, as well as providing a concise, well-indexed reference for the more
experienced user.

ui

ACKNOWLEDGEMENTS

LLAMA is the result of over 2 decades of programming by a large number of individuals at MIT
Lincoln Laboratory. To the extent that it could be traced or remembered, credit for individual functions is
given in each section. Many of these fimctions were originated long before the author of this manual
arrived at Lincoln Lab, and many of the original authors of the mainframe APL have either retired or left
for other opportunities. When much of this code was rescued from the Laboratory's mainframe
computer, it was quite a mix of programming styles and the level of documentation varied wildly,
including information on who had done what. Every attempt has been made to give credit where it is due,
and any omissions are solely due to lack of information. Any fiinction not specifically mentioned is

probably the author's own work.

Particular thanks for much of what is here go to two people. First and foremost is Prof. Paul
Penfield, Jr. at MIT, whose MARTHA started it all. His continued work produced a number of essential
LLAMA functions, and his support was invaluable in rescuing MARTHA from the mainframe and getting
it working on personal computers. The second person is David Hodsdon, who re-introduced the author to
MARTHA when he first arrived at Lincoln Laboratory, and who wrote a large number of the original
fiinctions on which LLAMA is based.

I would also like to thank Mark Fishman for having the patience to carefully proofread the final
version of this manual. He efforts have made this a much more polished document than it might have
been otherwise.

r

.;'^
Table of Contents

Abstract
Acknowledgements
Table of Contents
List of Illustrations
List of Tables

1. INTRODUCTION

(1.1 History
1.2 What Is APL?
1.3 LLAMA And Different Versions of APL

\. 1.4 Dealing With The APL Character Set
•.

1 1-5 'Locked' functions
1.6 Documentation Functions
1.7 Programming 'Style'

■ 1.8 Libraries And Setting Up APLSE
■- 1.9 References

2. LLUTILTY WORKSPACE (Utilities for Use with MAi^THA and LLAMA)

2.1 Introduction
2.2 The 'LEAVE' Workspace Copying System
2.3 Workspace Maintenance Functions
2.4 Timing Function
2.5 Native File Functions

i 2.6 Windows Bitmap Repair Function
2.7 Character Vector/Matrix Functions

'^ 2.8 Miscellaneous Functions
2.9 Acknowledgements

3. LLPLOT AND MAHrHAP WORKSPACES (XY Plotting Workspaces)

3.1 Introduction
3.2 First Time Use

■. 3.3 Basic Functions
' 3.4 Marking & Labeling With The Mouse

3.5 Printing

■\,
3.6 Formatting Functions

Ul

V

vii
xi
xi

1
1
1
2
3
3
4
5
6
7

9
9
9

11
14
14
15
17
17
17

19
19
19
19
21
21
21

3.7 Setup Functions ^^
3.8 Help Functions ^^
3.9 Variables ^^
3.10 Space (The Final Frontier..) 25
3.11 Customizing ^^
3.12 MARTHA Plotting 25
3.13 Acknowledgements ^°

vn

4. LLMARTHAWORKSPACE (EnhancedMAi^THACircuit Analysis Workspace) 27
4.1 Introduction 27
4.2 Frequency Vector Functions 27 /
4.3 Attenuator Functions 27 ,..
4.4 Circuit Equivalent Functions 28 I
4.5 Miscellaneous Functions 28
4.6 Acknowledgements 28

5. LLMSDIM WORKSPACE ('Full Field' Microstrip Transmission-Line Analysis) 29 '
5.1 Introduction 29 s
5.2 MSTiRIP Function 29 j
5.3 Auxiliary Functions 30
5.4 Accuracy, Speed, And Memory Tradeoffs 31 ^

5.4.1 Accuracy 31 i
5.4.2 Accuracy Enhancements 33
5.4.3 Speed 34 |
5.4.4 Speed Enhancements 35 .|
5.4.5 Memory 35

5.5 Acknowledgements 35 • j
5.6 References 36

6. LLCOMBFL WORKSPACE (Microstrip Combline Filter Synthesis) 37 !
6.1 Introduction 37 ^■
6.2 Topology 37
6.3 Parameter Input 38 j
6.4 Combline Filter Example 39 J
6.5 Sample Combline Synthesis Output 40
6.6 Element Matrix Key 41 |
6.7 Acknowledgements 41)

7. LLFILTEi? WORKSPACE (Filter Design Workspace) 43)
7.1 Introduction 43 f
7.2 Basic Band-Pass Filter Functions 43
7.3 'High Side C Capacitively Coupled Band-Pass Filter Functions 43 \
7.4 'High Side L' Inductively Coupled Band-Pass Filter Functions 45 '
7.5 Impedance Transforming Band-Pass Filters 46
7.6 Band-Stop Filter Function 47 'j
7.7 High-Pass Filter Function 47
7.8 Low-Pass Filter Functions 48
7.9 Resonator Modeling Functions 48 ,.
7.10 Normalized Stop-Band Frequency Functions 49
7.11 Miscellaneous Filter Functions 50 ^
7.12 Background Functions 50 i
7.13 Acknowledgements 5 0

vm

1

8. LLPHASE WORKSPACE (MAiRTHA Compatible Phase Distortion Analysis) 51

8.1 Introduction ^^
8.2 Group Delay Analysis Functions 51
8.3 Phase Non-Linearity Functions 53
8.4 Phase Compensation With An All-Pass Network 55
8.5 Acknowledgements 56

9. LLMIXEi? WORKSPACE (Mixer Spur Analysis) 57

9.1 Introduction ^^
9.2 'Run Time'Version OfAPL+PC Mixer Spur Plotting Software 59

9.3 Acknowledgements 60

10. LLTIME WORKSPACE (MAR THA Compatible Time Domain Analysis) 61
10.1 Introduction 61
10.2 Time Domain Analysis Functions 61
10.3 Output Modifier Functions 62
10.4 Time Response Examples 62
10.5 Frequency Spectrum Function 65
10.6 Fourier Series Functions 65
10.7 Fast Fourier Transform (FFT) Functions 66
10.8 Acknowledgements 66

11. MAKTHAD WORKSPACE (MARTifA'Development'Workspace) 67
11.1 Introduction 67
11.2 Nodal Wiring Functions 67
11.3 Stripline Model 68
11.4 Data Reduction Two-Ports 69
11.5 Approximate Group Delay 70
11.6 Rational Function Of S 71
11.7 Fourier Transform 71
11.8 S-Plane Analysis Option 72
11.9 Acknowledgements 72

12. LLEADIAL WORKSPACE (MAPTHARadialMicrostrip Element) 73
12.1 Radial Microstrip Element 73
12.2 Acknowledgements 74

13. LLRFCOIL WORKSPACE (Inductor Winding and Parasitic Analysis) 75

13.1 Introduction 75
13.2 Functions For Small Inductors 75
13.3 Single-Layer-Solenoid (SLS) Inductor Functions 75
13.4 Parasitic Analysis Functions 76
13.5 Acknowledgements 76

IX

14. LLDi?ANG£ WORKSPACE (Dynamic Range Analysis And Plotting) 77
14.1 Introduction 77
14.2 Glossary 78
14.3 Demo Plot 79
14.4 VDI Plotting 79
14.5 Acknowledgements 79

15. RUFILSYN AND FRMRUFLT WORKSPACES (LC Filter Synthesis & MAR TEA converter) 81
15.1 Introduction ^^
15.2 Elliptical Filter Design Example 81
15.3 Conversion To MARTHA Format 83
15.4 Conversion From Mainframe To PC APL 85
15.5 Acknowledgements 86
15.6 References 86

16. INDEX 87

... 1

Figure
No.

1

LIST OF ILLUSTRATIONS

2.1. Typical scaBned image
2.2. Plot captured from screen
3.1. Sample plot with multiple variables
5.1. Coupled microstrip impedance problem (new version , old version)

. 6.1. Layout of combline filter
• 6.2. Cross-section of combline filter substrate & cover

8.1. Frequency response of 3rd order elliptic filter
- 8.2. Group-Delay using AGD function

8.3. Group-Delay response using GD function
8.4. Unwrapped phase of elliptic filter
8.5. Deviation from linear phase of elliptic filter
8.6. Elliptic filter with all-pass phase compensator

^ 9.1. Example spur plot
10.1. Input waveform for time-response fimctions

; 10.2. System analyzed by AMPLVST
^ 10.3. System analyzed by IFAMPLVST

10.4. Time response of a square pulse through a low-pass filter
10.5. Time response of a tone burst through a band-pass filter
10.6. Envelope of atone burst through a band-pass filter
10.7. Fourier series decomposition of a square wave up to 1 l^h harmonic

14.1. Dynamic range DEMO plot

LIST OF TABLES

Page

16
16
20
34
37
38
51
52
53
54
54
55
58
61
61
61
63
64
64
65
80

Table
No.

5.1. Computed Impedance Comparison Of Coupled Microstrip Lines

Page

32

XI

1. INTRODUCTION

1.1 HISTORY

For the past 25 years or more, a number of staff members at MIT Lincoln Laboratory have made
extensive use of the APL computer language to solve a variety of problems, primarily in the area of RF
and microwave circuit design. This was aided and inspired by the availability of the MARTHA software
package [1.1, 1.2], which is a library of APL-based circuit analysis functions developed by Professor

Paul Penfield Jr. at MIT.

1.2 WHAT IS API?

In order to appreciate the full value of MARTHA and the workspaces described in this manual, a
few words about the APL language itself are in order. APL was originated at IBM as a concise form of
mathematical notation. It became quite popular within the technical ranks of IBM, and a desire to make it
machine executable resulted in the core of the computer language used today. Drawing fi:om
conventional math notation, a special character set was used. This required special terminals and printers,
which was a hindrance to its acceptance and growth. Despite this, it developed a devoted (but somewhat
small) following in research laboratories around the world. It also became popular for statistical and
actuarial work at a number of large corporations. It is still taught at a number of Universities, and is
popular in Europe, Canada and Russia.

Up until the mid-1980's, most APL was run on large mainframe computers. With the advent of
personal computers, and an APL interpreter for them, it became possible to use programmable fonts and
dot-matrix printers to deal with the character set problem. With the advent of 32-bit architectures, it is
now possible to run larger programs in less time on a basic PC than was ever possible on the best

mainframes of yore.

APL has a number of key features that make it an efficient problem solving tool:

1) APL programs are written using 'functions'. A function is a modular routine that can be
executed in isolation, or it can be called by other functions (including itself). This makes well-
written code re-useable. In this regard, APL has a lot in common with the 'C programming
language. It also means that small functions that perform well-defined tasks become an
extension to the language itself. A function to calculate the characteristics of coupled microstrip
transmission-lines can later find itself called as an essential ingredient of several different
microwave filter synthesis functions. The utility of a function is frequently limited not by the
intent of its original author, but only by the mgenuity of later users. Of course, this only works
if the functions are documented well enough that they can be understood by other users.

2) APL is an array based language. In most computer languages, vectors, matrices and higher
order arrays must be handled on an element-by-element basis. In APL, arrays are manipulated
as arrays. If two (equal-length) vectors, A&B, need to be added, they are simply added: A + B,
without the need for loops, indices etc. APL includes a number of powerful single-character
operators to perform more complex manipulations of matrices and larger arrays, including
transposition, rotation and inversion.

3) APL is a 'smart' language. It is smart enough to know how to handle large variables, so you
never have to dimension arrays or allocate and de-allocate memory. It is smart enough to know
that 'A' is a character, 1.25 is a floating point number, 2 is an integer and (depending on its
usage) 1 is a Boolean. All numerical computations are automatically done in double precision.
This eliminates an enormous amount of programming overhead and debugging.

4) The code is interpreted rather than compiled. This is viewed as a major drawback by many, and
can result in slightly slower execution* . However, it means that APL can be used as a 'super-
calculator' for quick solutions of technical problems. Operating in 'immediate mode', code
typed on the screen is executed on the spot. This is not only handy for small computations, but
by testing the execution of more complicated code, the pieces of a function can be debugged as
they are built up. Rather than putting an entire function together, compiling and debugging af^er
the fact, critical operations are checked 'in process'. The completed function frequently
requires no further debugging.

MARTHA is a powerful circuit analysis package, but many of its capabilities are now available in
other commercial circuit analysis products. However, its real utility is as an enormous library of circuit
analysis building blocks (functions). If all that is required is the S-parameters of a network, there are a
number of software packages on the market that can do the job just as well, and that have more 'user
friendly' input and output. On the other hand, if you want to analyze something that has never been done
before or synthesize a new kind of circuit, APL (with MARTHA) can do anything you can imagine.
MARTHA should not be thought of as a circuit analysis package, but as an extension to a powerful
programming language that makes it especially suited to circuit design.

LLAMA is not only a collection of (hopefully) useful workspaces, but it is also an example of the
power of APL and MARTHA applied to real-world problems. The workspaces cover a broad range of
tasks in RF and microwave circuit design. Some make extensive use of MARTHA functions, some (like
mixer spur analysis) don't use MARTHA at all.

1.3 LLAMA AND DIFFERENT VERSIONS OF APL

The initial commercial release of LLAMA is intended to be used with APL2000's APLSE (Special
Edition), which is freeware. The workspaces will also run under the old Manugistic (STSC)
APL*PLUS/PC, which is now sold by APL2000 as APL+PC. APL+PC comes with fiill

* The slower execution of interpreted code is frequently used to dismiss APL out of hand for solving
large problems. Because it operates on arrays and performs operations like matrix inversion internally,
well written APL can be surprisingly fast. A large amount of the overhead of a language like BASIC
results from re-interpreting code in loops. Using the array-based structure of APL, loops can frequently
be avoided altogether, resuhing in fast execution. As an example, a microstrip analysis program was
translated from FORTRAN to APL, with all of the loops left intact. This took almost a full minute to
analyze a single pair of coupled lines on a 33 MHz '486 PC. Converted to loopless APL, the execution
time was reduced to 1.48 seconds. Using 'C only cut the time to just below a second. In the mid-1980's,
the same computation took over 5 minutes on a 'high speed' scientific mainframe. With today's faster
PC's, sacrificing ease of use (and programming) for small increases in execution speed is false economy.
If a severe computational bottleneck js encountered, APL can call compiled code from C or FORTRAN.

documentation, and can use upper memory or disk as swap space to enlarge the available workspace size.
A version of LLAMA to run under APL2000's APL+DOS (equivalent to Manugistic's APL-kPLUS
11/386) will be made available if there is a demand for it. APL+DOS uses fast 32-bit code, and can
access extended memory to provide almost unlimited workspace size.

APLSE is a very powerful implementation of API, but it lacks documentation. If you are new to
APL, there are a number of useful files and tutorials located at a World Wide Web site at the University
of Waterloo in Canada. The URL is ftp://archive.uwaterloo.ca/languages/apl/software-
library/index.html. Under '1996 Additions', you will find not only APLSE, but a tutorial on its use. Jim
Weigang at the University of Massachusetts at Amherst also has a WWW page at
http://chilton.com/~jimw/. This includes information on his 'APL Notes' book, which is an APLSE-
based tutorial on APL. There is also an Internet 'newsgroup' devoted to the APL language and its
dialects called 'comp.lang.apl' where you can ask questions about APL in general.

1.4 DEALING WITH THE APL CHARACTER SET

The documentation with APLSE includes instructions on how to set up the character set download
programs for both the screen and a printer. This is best automated by using a batch file to call APLSE,
and a sample batch file (APLSE.BAT) is included with LLAMA in the file LLAPLSE.ZIP along with
some other useful items. Once you have APLSE up and running, you should follow the instructions for
the INITIAL workspace, which allows you to print out the somewhat abbreviated manual. Chapter 1
includes a description of the APL keyboard layout, which will take a little getting used to. APLSE uses
what APL2000 calls the 'Unified' keyboard layout, which leaves all standard characters in their normal
locations. The APL keyboard of old was very confusing to many people, and this is a big improvement.
If you are returning to APL after a long absence, this layout may come as a shock to you. It doesn't take
long to un-leam the peculiar places APL used to keep things (like parentheses), and most of the special
APL symbols are where they used to be, but are accessed with the Ah key. If you are using APLSE, the
files in LLAPLSE.ZIP should be extracted and moved to the directory containing the APLSE executable
file. LLAPLSE.ZIP includes a README.TXT file that explains briefly what each of the files does. The
original APL character set only had a capitalized italic courier-like font for text, and all of the principle
functions and variables in MARTHA and LLAMA use capital letters for their names, so it is usually best to
set Caps-Lock on at the beginning of a session. As you have probably already noticed, a font similar to
the original APL font is used in this manual to differentiate APL names, results etc. fi-om regular text.

1.5 'LOCKED'FUNCTIONS

Inside some of the LLAMA workspaces (and all of the MARTHA workspaces) certain functions are
'locked'. This means that these functions can't be viewed, or more importantly, edited. In addition to
protecting intellectual property, this reduces the chances that a user will shoot themself in the foot by
editing code they don't fiilly understand. The original MARTHA code was written to run on machines
with as little as 32K of memory. Not only was there no way to include comments in the code, a lot of
subtle programming tricks were used to squeeze out every last unnecessary byte. For example, many
MARTHA functions use absolute branching, and will cease to run if a single comment line is added at the
top. Fortunately, the MARTHA code has been thoroughly tested and debugged, and there is no reason
users should ever need to deal with its inner workings. Most of the newer LLAMA functions are heavily
commented, and are unlocked to be used as examples or starting points for writing your own functions.

1.6 DOCUMENTATION FUNCTIONS

Each section of this manual is devoted to describing an APL 'workspace', which is just the APL
way of collecting and organizing related functions. Each workspace corresponds to a DOS file, and
(depending on the version of APL) will have a file extension of .aws, .ws or .w3. In order to provide the
equivalent of on-line help, there are several documentation functions available in most of the LLAMA
workspaces. These make use of 'public comments', which can be accessed even if a function is locked.
Normal comments in APL begin with the 'lamp' symbol (fl), while public comments begin with the pair
of symbols 'fi V. APL2000's APLs have a system function (one built into the interpreter) that can read
these. There are three documentation functions that make use of this system:

SUMMARY: SUMMARY displays the first public-comment line of all of the 'main' functions in a
workspace. A 'main' function is one expected to be executed directly by the user, and the function
names are capitalized. There are many 'background' functions that are called by 'main' functions,
and these are in lower case or begin with a special character sequence. The first comment line in most
LLAMA functions contains a very brief description of what the function does.

Here is an abbreviated version of the result of running SUMMARY in the LLAfSDIM workspace:

SUMMARY
WSID: 8 LLMSDIM 10/14/96

text-^EXPLMN fnname — Returns all public comments from <fnname>
out*-KLtMSTRIP params — Adds the Coupling 'KL' to the Output of MSTRIP

I
out*-Ldummy WSFROMZ params — Computes W/H and S/H from Zoe and Zoo
Zoe,Zoo-^ZFROMKL Zoe,KL — Computes Zoo, Given Zoe and KL

For list including background functions, use SUMMARYALL function

SUMMARY ALL: As the SUMMARY function indicated above, the SUMMARYALL function displays
both the main and background functions in a workspace. The result of running SUMMARYALL on the
same workspace includes a number of background functions with lower case names:

SUMMARYALL
WSID: 8 LLMSDIM 10/14/96

text-<-EXPLAIN fnname — Returns all public comments from <fnname>
out-^KLl^MSTRIP params — Adds the Coupling 'KL' to the Output of MSTRIP

I
out-^Ldummy WSFROMZ params — Computes W/H and S/H from Zoe and Zoo
Zoe,Zoo'-ZFROMKL Zoe,KL — Computes Zoo, Given Zoe and KL
amat — Background Fn for MSTRIP. Creates Global 'a' and 'b' Matrices
z*-ci X — Background Fn for MSTRIP. Computes Cosine Integral

I
p^mgreen — Background Fn for MSTRIP. Green's Function Integration,
p^mphi — Background Fn for MSTRIP. Computes PHI for €r=l W/No Cover

EXPLAIN: The EXPLAIN function displays additional public comments from a function that
describe what inputs are required, what the function does, and what outputs are produced. The name
of the function to be 'explained' is passed as a right argument in the form of a string. For example.

here is what EXPLAIN has to say about the 'ALLPASS' function found in the 'LLPHASE '

workspace:

EXPLAIN 'ALLPASS'

net^Zo ALLPASS Fo(Hz),Q — Creates A 2nd Order All-Pass Network
Creates a MARTHA network description of the following circuit:

La
1 nnnnn 1
1 1
I Ca Ca I

O o 11 o 11 o—o Note: Q must be > 1
I

=== Cb
I

2o - =■ ^ Zo
= Lb

I

Circuit can be used to provide Group Delay equalization for filters.
REF: Williams, A.B., Taylor, F.J., 'Electronic Filter Design
Handbook' McGraw Hill, 1988, pp 7-4 to 7-6

In addition to these fiinctions, all of the LLAMA workspaces contain a DESCRIBE variable that gives a
brief overview of the functions is the workspace.

1.7 PROGRAMMING'STYLE'

After years of working with APL, a number of programming conventions have been developed at
Lincoln Laboratory that simplify using and maintaining a large number of workspaces and functions. To
make the functions easier to use and to work with the public comment documentation functions above,

most follow these general rules:

1) All functions that might normally be executed in immediate-mode by a user have capitalized
names. Functions that are primarily called as background functions have lower-case names.
Similar conventions are used for any global variables.

2) The first line of each function is a public comment (beginning with the symbols 'fl V) indicating
the general syntax (monadic, dyadic, etc.) and a brief description. This is what the user sees when

the SUMMARY function is executed.

3) The next section of the function consists of public comments giving a detailed description of what it
does, what the inputs are, range limitations, and references. This is what is listed when the user
runs the EXPLAIN fimction. This is generally much more readable if you type it in lower-case
(i.e. normal) text instead of capitalized APL text.

4) The first few lines of actual code check to see if the number of inputs in the right argument is
correct. If not, the function prompts the user for the proper inputs, or exits with a polite warning.
This means that if you remember what function you want, but don't quite remember the input

format, you can call it with an empty vector (' ') and get prompted. A check is made for the
existence of the left argument, to allow prompting without requiring prior knowledge of whether
the function is monadic or dyadic.

5) Once the correct number of inputs is obtained, they are checked against any range limitations the
function may have. If an error is detected, the function either: a) branches to zero and produces an
error message, while returning a resuh any calling function can recognize as erroneous, or b) uses
the UERROR function to send an error message and terminate with everything pending in the state-
indicator. Option a) is a bit cleaner, but requires care when writing higher level calling functions.

1.8 LIBRARIES AND SETTING UP APLSE

APL uses the term 'library' to describe a group of workspaces. On personal computers, the APL
libraries correspond to sub-directories. Internal to APL, libraries are designated by numbers, which saves
a lot of typing, but requires the user to set up a library file to let APL know where to find things. In
APL2000's APL, this is typically done with a file called LIBS.APL. If you are using one of the
commercial APL's, the documentation explains how to set this up. For those using APLSE, there are
two files included in LLAPLSE.ZIP that you can use to get started:

1) The first is called LIBS.APL file. This is just an ASCII text file, and contains the following:

! Library Definitions for APLSE
lib 0 = A:
lib 1 = B:
lib 2 = C:\APLSE
lib 3 = C:\APLSE\MYWS
lib 7 = C:\APLSE\MARTHA
lib 8 = C:\APLSE\LLAMA
!NOTE: LLAMA workspaces must be in Library #8

As you can see, the library numbers do not have to be in sequence.

2) The second file is called CONFIG.APL. This is an optional file used to configure your APL
system, and has a lot of useful features. Unfortunately, the documentation that comes with
APLSE makes no mention of it. CONFIG .APL is also just an ASCII file containing:

CONFIG.APL File for APLSE
Other parameters exist beyond those shown here; ! marks comments
Adjust directories and uncomment as desired

 Environment Information
d=15
printerport=:10
translation=2

Extra []LIBD libraries after startup
Printer output via APLPRINT.COM or APLPS.COM drivers
Character translation for printer; 2 = ASCII

config=C:\APLSE\LIBS.APL ! Library definitions

Session Manager Options
capslock=ON
numlock=OFF
insert=0N
dragdown=ON
screenmem=30

ON useful for Text keyboard; irrelevant for APL keyboard
OFF means numeric pad will provide cursor movements
Keyboard insert or replace mode
ON -> re-entered lines of input copied to end of session
Total session manager & editor memory

initWs= '3 INITWS' ! Start-Up Workspace

There are three entries of particular note. About halfway down is the line that tells APL where to
find the library file. The last two Imes set how much memory the editor gets to work with, and the last
line sets up a start-up workspace, which is a good place to park your printer character-set download
function and any other APL operations you need to run at the beginning of a session.

Both files should be located in the directory containing the APLSE executable. You can edit these
files to match your own directory structure, with one CRITICAL exception. A large number of the
LLAMA workspaces need to know where the LLAMA files are stored, and have been 'hardwired' to look
in Library 8. If you can't follow this convention because you have an existing APL system with Library
8 in use, there are a number of changes that will need to be made in the LLAMA workspaces. These are
all covered in the appropriate Sections of this manual.

The remainder of this manual will go into detail on each of the LLAMA workspaces; how they are

used and what they do.

1.9 ACKNOWLEDGMENTS

As was mentioned at the beginning, LLAMA is the result of over 20 years of programming at MIT
Lincoln Laboratory. To the extent that it could be traced or remembered, credit for individual functions is
given in each section. Many of these functions were originated long before the author of this manual
arrived at Lincoln Lab, and many of the original authors of the mainfi-ame APL have either retired or left
for other jobs. When much of this code was rescued from the Lab's mainframe, it was quite a mix of
programming styles and the level of documentation varied wildly, including who had done what. Every
attempt has been made to give credit where it is due, and any omissions are solely due to lack of
information. Any function not specifically mentioned is probably the author's own work.

Particular thanks for much of what is here go to two people. First and foremost is Prof. Paul
Penfield, Jr. at MIT, whose MARTHA started it all. His continued work produced a number of essential
LLAMA functions, and his support was invaluable in rescuing MARTHA from the mainfi-ame and getting
it working on PC's. The second person is David Hodsdon, who re-introduced the author to MARTHA
when he first arrived at Lincoln Lab, and who wrote a large number of the original functions on which

LLAMA is based.

I would also like to thank Mark Fishman for having the patience to carefiilly proofread the final
version of this manual. He efforts have made this a much more polished document than it might have

been.

1.10 REFERENCES:

1.1 Penfield, Paul, Jr. "MARTHA Users Manual," MIT Press, Cambridge, MA, USA, 1971

1.2 Penfield, Paul, Jr. "MARTHA Users Manual, 1973 Addendum," Dept. of Electrical Engineering,
MIT, Cambridge, MA, USA, 1974

2. iLUnxry WORKSPACE

UTILITIES FOR USE WITH MARTHA AND LLAMA

2.1 INTRODUCTION

This workspace contains a collection of small fiinctions that are useful for managing and
maintaining your workspaces, along with a few functions that just perform useful or common tasks. All
of the functions have been documented using the 'public-comment' functions described briefly in the
introduction. All three of the documentation functions CEXPLAIIT, 'SUMMARY' and
'SUMMARYALV) are included in LLUTILTY, partly for use with the workspace, and partly as a
convenient place to copy them from when you are setting up your own workspaces. For completeness,
here are the results of running EXPLAIN on all three functions:

EXPLAIN 'EXPLAIN'

text^EXPLAIN fnname — Returns all public comments from <fnname>
Modified to show ALL public comments in unlocked fns, not just lines
at top.
LLAMA Ver. 1.0, 12/31/96, Copyright 1996 by M.I.T

EXPLAIN 'SUMMARY'

SUMMARY — Display a short description of MAIN fns in active workspace
Does not display background fns beginning with lower case letters,
or 'V_', which signifies a VDI graphics function. To see all fns,
use 'SUMMARYALL'.
LLAMA Ver. 1.0, 12/31/96, Copyright 1996 by M.I.T

EXPLAIN 'SUMMARYALL'

SUMMARYALL — Display a short description of ALL fns in active workspace
To skip display of background fns, use 'SUMMARY' fn.
LLAMA Ver. 1.0, 12/31/96, Copyright 1996 by M.I.T

The purpose of most of the functions is fairly obvious from the SUMMARYALL and EXPLAIN
results. The remaining functions in LLUTILTY have been loosely grouped into seven different
categories, and this section describes their use and operation in detail. Copies of the EXPLAIN listing
for all of the functions are included (minus the version/copyright line to save some ink).

2.2 THE 'LEAVK WORKSPACE COPYING SYSTEM

The functions 'LEAVE', 'COPYtWS', and ' ANl' work together to provide an automated means of
copying in a major workspace (like LLMARTHA) when a workspace is loaded, and then erasing it when
you are done. This saves a considerable amount of disk space because you don't keep extra copies of
common functions in every workspace you use. It is also much easier to work with, and maintain, a
workspace that contains only the functions unique to its purpose.

Many of the LLAMA workspaces are already set up to use the 'LEAVE' system to copy in
'LLMARTHA\ It is important to understand how the system works in case something goes haywire. The |
'EXPLAIN" results for 'LEAVE' cover the basics:

LEAVE — Erases LLPLOT and LLMARTHA functions and variables, then saves WS \
Uses 'COPYt^WS' fn along with the background variables 'NLlAwsid' and
'WLSAwsid' to keep track of what to save or erase. These variables
are created by the 'AWL' function, which should be executed BEFORE]
either LLPLOT or LLMARTHA are copied into the active WS. j

SETUP: (1) Create a WS you would like to use with LLPLOT or LLMARTHA. ,.
(2) Run AWi. This creates the 'NL2/3&' variables |
(3) Execute: 1 COPYmS '8 LLPLOT' or '8 LLMARTHA'. This PCOPY's I

objects from the appropriate WS.
(4) When done, run LEAVE. This erases fns and vars from LLPLOT |

and LLMARTHA, and saves the workspace. |
(5) Add 1 COPYAWS '8 LLPLOT' or '8 LLMARTHA' to your Latent Expression

(ULX) so they will be copied automatically on Startup.
(6) Periodically, run AWL after executing LEAVE, then save the |

WS. This updates the object lists.

NOTE: Other WS's can be added to the process as long as they contain ,
their own 'WL2/3A' variables created by running AWL. i
LLAMA Ver. 1.0, 12/31/96, Copyright 1996 by M.I.T >'

In step (1), you create and name a workspace, and copy in 'LEAVE',' ANL' and 'COPYi^WS'. \
You can then create any variables or functions with which you wish to work. When you execute ' ANL' I
in step (2), it creates two variables in the workspace, NL2^wsname and NLS^wsname. These
contain a list of the variables and functions in the workspace, respectively. j

At this point, you can load in either LLPLOT or LLMARTHA using the COPYtWS function. It is
assumed that both are in Library 8. If you set up your system with another Library for LLAMA, you will j
have to change the right argument of COPY^WS in any workspaces that use this system. When j
COPYmS is run with a left argument of' 1', it does a protective copy of the workspace. This means that
none of the LLMARTHA or LLPLOT objects will overwrite anything with the same name. Both of these t
workspaces have their own ANL variables, which will be copied into your workspace. You can now do |
whatever work is required with the combined workspace.

When you are done, you execute the LEAVE function. This does two things: it carefully erases ■
ONLY those fiinctions that were copied in step (3), and it saves the workspace.

In order to automatically copy in either LLMARTHA or LLPLOT when a workspace is loaded, in s
step (5), you put the appropriate COPY^WS command into the Latent Expression (ULX) of your]
workspace. When a workspace is loaded, any string assigned to ULX gets executed, so you could just
type: j

DLX*-'l COPYmS ''8 LLMARTHA'" <Enter>

It is frequently easier to have the name of a 'start-up' function assigned to ULX. In all of the j
LLAMA workspaces that use this system, the function is 'STARt'. This is where you would change the

10

library number if required, and it provides a convenient place to initialize any variables, display a title etc.
Make sure you save the workspace after you have assigned a string to ULX.

Step (6) is optional, but provides some insurance in case something goes wrong. Any time you run
^NL, it updates the two NL2 / 3 variables. It is VERY important that you DON'T run ANL while
LLMARTHA or LLPLOT are still in the workspace. If you do, it will assume that everything belongs in

your workspace, and running LEAVE will have no effect.

One common issue that arises is what to do if you wish to copy an existing workspace. For
example, if you want to design some filters for a project, it would be useful to have a copy of the
LLFILTER workspace dedicated to that project without cluttering up the original workspace. To do
this, you would first load the LLFILTER workspace, and then execute LEAVE. You can then rename
the workspace and save it. At this point, everything will behave normally when you load the workspace,
even though it contains the variables NL2/^LLFILTER and NLS^LLFILTER, and the title will still
claim it's LLFILTER. The only problem arises if you execute AWL at this point. It will create a NEW
set of NL2 / 3 variables, and COPY^NS will produce an error message about too many variables. All
you need to do is erase the old NL2/3i^LLFILTER variables, and everything will function normally.

One additional trick is used with this system. When LLPLOT or LLMARTHA is originally
PCOPIED into a workspace, all of the background variables should come with them. However, the titles
and plot variables are frequently customized for a particular workspace, and you don't want to lose them
every time you run LEAVE. In order to do this, the names of these variables have been removed from
the WL2 / 3 variables in LLPLOT and LLMARTHA. This way they are brought in the first time, but they
are never erased. In order for this to work properly, ANL should NOT be run on the original LLPLOT
and LLMARTHA workspaces, because it will place the plot parameter variables back into the NL2/3

variables.

Here are the EXPLAIN listings for both COPYmS and AWL:

mode COPYms copyws — Automates copying/erasing workspaces (see LEAVE)
If 'mode'=l, and 'copyws' isn't already present, performs a PCOPY.
If 'mode'=0, and 'copyws' is present, erases only objects copied from
'copyws'. Uses background variables 'NL2^wsname', 'NL3^wsname', ^
'NL2^copyws', and 'NL3tcopyws' created by the 'ANL' function. Library
numbers are required to copy, but not to erase.

^NL -- Creates 'NL' variables for use with COPYiyWS function.
Execute when workspace contains ONLY those items you wish to save.

2.3 WORKSPACE MAINTENANCE FUNCTIONS

Once you have used various workspaces for a while, they tend to fill up with a lot of old variables,
copies of functions etc. If you want to use one of these workspaces for a new project, some
'housecleaning' is frequently in order. LLUTILTY includes a number of functions to help in this task.

The function 'DIFF' allows you to compare functions in two different workspaces. This is useful
if you've inadvertently ended up with two functions of the same name, or are trying to sort out two
different revisions of a function. You can also compare entire workspaces by omitting the function list.

11

Text-[fnname{s)] DIFF wsname — Compares local fns with those in 'wsname^
Compare function 'fnname' with function of same name {all functions
if 'fnname' blank or absent) and report any differences. 'fnname'
can also be a matrix of names.

While developing a new function, it is often usefiil to have a printed copy on which to scribble.
Short functions can be printed out using the Shift-Print Screen key combination, but a better approach is
to use the 'PRINTL' function. PRINTL prints out listings of any functions or variables in its argument
to an HP LaserJet compatible printer. Each page includes a header with additional useful information, as
described in the EXPLAIN listing below:

PRINTL Name is) — Prints Listing of Named Objects to HP Laserjets
Objects can be a mix of either variables or functions. Name{s) can
be either a single name, a space or comma delimited list, or a matrix.
Each page has a header with the workspace name, the date and page #.
Based on Paul Penfield's 'DOC function.

Once you have slaved over developing a workspace for months, and you finally have it all working
the way you want, it's a good idea to keep a printed copy of the complete workspace around for future
reference. The function 'DOC automates this process. DOC prints out a listing not only of the functions,
but all the variables in a workspace. It's not a bad idea to run VERLIST (see below) first to make sure
you don't have any enormous variables that will take 30 pages to print out. DOC is set up to call the
function 'GLOBAL'' to give a complete list of all of the global variables in the workspace. If
LLUTILTY is not located in Library 8, DOC won't run unless you either edit the location or omit
running GLOBAL (see the EXPLAIN listing below). This function only works with HP LaserJet
compatible printers, and includes a number of subtle programming tricks to avoid interactions between
DOC and the workspace in which it is running. For example, there are no labels used for branching,
because these would be treated as variables within the workspace. They would be listed as such, possibly
masking the existence of a real variable of the same name. The function is provided unlocked so the
Library location of GLOBAL can be changed, but further modifications are strongly discouraged.

DOC Title — Prints detailed workspace listing to HP Laserjet printers
Document workspace non-destructively. 'Title' appears as WS name in
header on each page. Suspended fns are OK. Includes call to fn
GLOBAL to list all global variables in fns. If title string begins
with '/', call to GLOBAL is omitted. 'DOC may require editing to
give correct location of GLOBAL (see UPCOPY in line [13]). If Title
= LLUTILTY, 'DOC is included in listings. DOC will crash on any
workspace containing the Laserjet download variables 'dlHPLJ' and
'dlHPLJL'. Program also doesn't correctly list vars or fns named 't',
'W, 'V, 'w', 'x', 'y', or ' z'.

Although generally to be avoided, global variables are occasionally useful. If you need to clean up
the variables in a workspace, some of them may be required as global variables for important functions.
As mentioned above, the function GLOBAL scans a fimction and identifies all of the global variables it
uses. GLOBAL can also be used to scan an entire workspace for occurrences of global variables.

12

Text-^GLOBAL fnname{s) — Lists all global names in fnnanie{s)
Also lists fn lines containing '$' (execute) which might contain
additional names. 'fnname' can be a matrix of names. If it is an
empty vector, all of the fns in the WS will be checked. GLOBAL
doesn't recognize functions named 'y' or 'z'.

There are two functions for screening the list of variables in a workspace; 'LISTVARS' and
'FLUSHVARS\ LISTVARS gives a quick summary of all the variables in a workspace, and
FLUSHVARS allows you to go through them and delete any that are no longer of interest.

LISTVARS — Lists and briefly describes variables in WS
Lists all of the variables in a workspace, along with their type
{numeric or character), the 1st element or 10 characters, and their
shape {size) .

FLUSHVARS — Lists, describes and allows deletion of vars in WS
Lists all of the variables in a workspace, along with their type
{numeric or character), the 1st element or 10 characters, and their
shape {size). After displaying the information on a given variable,
the user can erase it, exit the function, or go on to the next var.

All of the unlocked functions in LLAMA have a version string placed on the last line as a public
comment. This is a programming convention that is fflGHLY recommended for any functions you may
write. All of the LLAMA functions are being released initially as version 1.0, but bug-fixes and updates
in the future will have different version numbers. If you want to check that you are running the latest
version, the 'VERLIST' function displays the version string from all of the functions in a workspace.

VERLIST — Displays the Names and Version Notes of Fns in Workspace
Assumes version note is a public comment {beginning with 'fiv) on
the last line of a function, beginning with the characters ' V

APL uses something called a 'symbol table' to keep track of all of the objects (functions and
variables) in a workspace. For speed reasons, older versions of APL use a fixed sized table and don't do
'garbage collection' on the symbol table. Eventually, as you move variables around and run more
functions, the symbol table can fill up. At this point, the workspace will stop working until the symbol
table is cleared or a garbage collection is done. Some APL's have 'QPOffE' commands that will invoke
a garbage collection. Another approach is to copy the workspace into a clear workspace, but then it must
be renamed and the Latent Expression (ULX) restored. The function 'RESET' does this automatically,
and increases the symbol table size in the process. The larger symbol table size is frequently necessary
when working with LLMARTHA because of the large number of functions included in the workspace.

RESET — Clears symbol table, then resaves WS with old name and QLX
Stores the entire sequence of commands required to clear the symbol
table in the keyboard buffer, then executes. Sets symbol table to
1024 elements (APi2000 default is 512) .

It is possible (and recommended) to write well commented APL that can be easily modified or
embellished in the future. Compact and cryptic code is easy to write in APL, but it is usually
indecipherable even to its author within 6 months. Unfortunately, comments take up space. If you find

13

that you are tight for memory, you can remove all but the public comments (used for the EXPLAIN and
SUMMARY system) using the 'PDECOM" function. The LLPLOT workspace contains a LOT of
comments, and running PDECOM on a COPY of LLPLOT can free up a lot of space. PLEASE don't do ^
this to your only copy of a workspace! Like locking a function, there is no way of reversing this process.

1
okl-^PDECOM fnname — Strips non-public comments from unlocked fn(s) 'fnname'
Result is ~1 for non- or locked fn; 1 if successful
If 'fnname' is a matrix of fnnames, PDECOM loops through them j

t

The 'WHEREIS' function helps solve two common problems. The first is when a variable in your
workspace reappears despite frequent deletions. This means that someone forgot to make the variable)
local, and it's being re-created as a global variable every time some function is run. WHEREIS lists i
every function in the workspace that uses the variable, and shows if the variable is localized in line [0].
The second problem occurs when you want to erase a function, but aren't sure if it's crucial to another . |
function you need. WHEREIS makes a list of functions that might be calling the one in question. ^

f
Text-^WHEREIS String — Locate all occurences of String in all fns in WS
Returns fnname[Lineno{s)] for each occurrence. String can be a text
string, a variable, or a fn name. WHEREIS indicates if String was
found as a comment, string, or object name. |

2.4 TIMING FUNCTION

Although modem PC's are quite fast, some complex simulations can take a while to execute. It is |
handy to have a way of timing such things, and the function 'MEASAT' was developed for this purpose.

I
I

MEASAT St — Displays time between executing 'MEASAT 0' and 'MEASAT 1' |
Used to display elapsed time by executing just before and just after
a given operation. Accuracy is limited by system clock. Uses the ,
global var 'to', which is erased when 'st'7^0. j

2.5 NATIVE FILE FUNCTIONS j

APL uses a special file format for storing information, and refers to standard DOS files as 'Native
Files'. It is easy to use the editor to move text files in and out of APL, but it is often useful to import or
export numerical files as well. The functions 'ASCIIOUT and 'ASCIIGET work with numerical
data matrixes, and automatically translate the APL high minus sign (~) to work with other applications.

'File' ASCIIOUT Data — Creates an ASCII DOS File of a Data Matrix
'File' is any valid DOS file name, and will automatically be
assigned an extension of '.asc'. NOTE: If you get 'FILE NAME ERROR',
check to make sure that the filename doesn't already exist.

Vect-^ASCIIGET File — Converts ASCII Text Files to APL Numeric Vectors
File -^ '{Drive):\{Path)\{Filename).{Extension)'. Source file must
contain only numeric data. Result is a vector containing the
elements in the source file. Has been tested with Lotus spreadsheet
print file.

t

14

The function 'S^PARMf is more specialized, in that it takes a 9 column matrix (one for frequency
and four S-Parameters in magnitude/angle format) and creates a 'Touchstone' compatible ASCII file.
This format can be read by a number of commercial RF CAD packages.

'filename' StPARAM Mat — Creates a Touchstone 2 Port S-Parameter File
The filename must be a string. The filename should include the
path BUT not the file ext. '.S2P'. This is added by the SAPARflM fn.
Mat must be a 9 column matrix. Column 1 = Freq in MHz, remaining
columns are pairs of mag/ang S-parameters in order: Sll, S21, S12, S22
NOTE: If you get 'FILE NAME ERROR', check to make sure that the
filename doesn't already exist.

2.6 WINDOWS BITMAP REPAIR FUNCTION

One of the nicer features of working under Microsoft Windows is the ability to move information
easily from one application to another. Although it has some quirks, there is a procedure for getting plots
made with the APL plotting functions into a Windows compatible bitmap. All of the plots in this manual
were created using this system. The procedure is as follows:

1) Create the desired plot in a full screen session of API, running under Windows.

2) Press Alt-PrintScreen. This copies the screen into the clipboard. Press any key to get back to
APL from the graphics screen, then press Alt-Enter to reduce the APL window.

3) Open the Windows Paintbrush application. Under 'Options', select 'Jmage Attributes'. Set
'Width' to 5.35 and 'Height' to 4 (units should be inches). The options 'stick', and you should
only have to do this once. If needed, maximize so Paintbrush is running in full-screen mode.

4) Using the 'Edit' menu, select 'Paste'. After a second or so, your plot will appear on the screen.
Unfortunately, on many systems, the background will be black. Using the 'File - Save As'
command, save the image as a 16 color bitmap (.BMP) file using the 'Save File as Type' menu.

5) LLUTILTY contains the function 'FIXBMP\ which corrects the color problem. The
EXPLAIN listing for FIXBMP is shown below:

0K1*-FIXBMP File — Corrects Black Background in APL Plot Bitmaps
File ^ ' (Drive) :\ (.Path) \ (Filename) . (Extension) ' . Source file must
be a 16 color bitmap file (.BMP) from Windows Paintbrush.
Function returns a '1' if the operation was successful, a '0'
otherwise.

Get back into APL, and run FIXBMP on the file you saved in Paintbrush. This should restore
the plot background to white, and the foreground color of the axes and labels to black.

6) If you are planning on using the plot in a word-processor document and only need a black and
white plot, you can save considerable disk space by converting the .BMP file to monochrome.
This can be done by reloading the file into Paintbrush, and then using 'Save As' to convert it to
monochrome with the 'Save File as Type' menu. This will reduce the file size by a factor of
four. A typical monochrome .BMP file created this way will be about 40 Kbytes.

15

Below are two example plots. The first (Fig. 2.1) was scanned in. The second plot (Fig. 2.2) was
captured using the new approach. Although the process may sound a bit involved, it's not too bad once
you've got things set up and have had a little practice.

TSftNBMISSION AND JtrrLICTION RESPONSE OF 'ELBPNET'

6.000S7 e.OCrOE? 1.000E8 l.ZOOEB

FREQUENCY <HZ)

Figure 2.1. Typical scanned image

TRONSMISSION «ND REFLECTION RESPONSE OF 'ELBPNET'

CIRCUIT flNPILYSIS BY MBRTHft. 73-H 16:12 09/01/94

60 r.... I I I ' ■ ■ ■

6.00OE7 8.000E7 1.000E8 1.2O0E8 1.4O0Ee 1.600E8

FREQUENCY <HZ>

Figure 2.2. Plot captured from screen

16

2.7 CHARACTER VECTOR/MATRIX FUNCTIONS

There are two functions that allow you to convert character variables back and forth between a
vector form (with embedded returns) and a matrix. The matrix form can be wasteful of space, because all
short lines are padded with spaces to the length of the maximum line, but it is sometimes easier to work
with in a program. The function M2V converts a matrix to a vector, and 72M converts the other way.

CharVect^MlV CharMat — Converts a Text Matrix to a Vector

CharMat^V2M CharVect -- Converts a Text Vector to a Matrix

2.8 MISCELLANEOUS FUNCTIONS

There are four other functions in LLUTILTY that are useful for specific tasks. If you just want a
quick print-out of a function or variable, you can use Shift-Print Screen, or Ctrl-Print Screen to send the
screen contents to the printer. Unfortunately, you need to issue a form feed to get the last page to come
out, or take the printer off-line and eject it manually. The function 'PFIFF' takes care of this by setting
the keyboard function key 'Fl' to issue a form-feed to the printer. This is a handy function to run at the
beginning of any APL session, and can be run automatically in your start-up workspace so that it is

always ready to go.

PFIFF — Sets Function Key Fl to send a form-feed to printer

The next two functions are used to create time-stamps and workspace identification for any

functions that might need them.

String'^DATE — Returns time and date in form; 12:01 HOURS, MAY 04, 1992

String*-WSDATE -- Returns WSID, time, and date

The last function, 'efmt\ takes care of a quirk of APL2000's exponential number formatting
function. The original mainframe system would format a number like 0.0005 as 5£~4, which is
perfectly fine. Unfortunately, the PC APL would produce 5E~ 0 0 4, which is not only a bit less esthetic,
but also raised havoc with the alignment and spacing of some output tables because of all of the extra
zeroes. Rather than redesign all the tables and live with all those extra zeroes, efmt was written to
duplicate the old mainframe resuh.

Z-^D efmt X — 'Clean' exponential format fn. 'D ^ X' w/o extra zeros
Removes extra zeros from exponent for shorter labels. Also adds '0' in
front of decimal formats less than magnitude 1. NOTE: At this time,
this function can't handle vectors or matrices of numbers.

2.9 ACKNOWLEDGMENTS

The DOC, DIFF, GLOBAL, M2V, V2Mmd WHEREIS functions were all originally v^ritten by
Paul Penfield, Jr. The LEAVE system and its associated functions were developed by David Hodsdon,
as was the ME AS AT function. Mark Stevens originated the ASCII GET and ASCI I OUT functions.

17

The EXPLAIN, SUMMARY and SUMMARY ALL functions are based largely on similar functions used
by APL2000 with their workspaces.

18

3. iLPLOTANDMaRTHaP WORKSPACES

XY PLOTTING WORKSPACES

3.1 INTRODUCTION

This is a description of the APL plotting workspaces developed at MIT Lincoln Laboratory. They
use the 'DC APL2000 PC graphics to implement a general purpose XY plotting package, including Log
X, Log Y and Log XY with or without autoscaling. The general operation is based on an old Lincoln
Laboratory mainframe workspace called 'TEKPLOT\ but with a number of embellishments and
additional features. Hardcopy output can be obtained on Epson type dot-matrix printers, HP LaserJet or
DeskJet printers. There are two workspaces supplied with LLAMA; 'LLPLOT and 'MARTHAP '.
LLPLOT is a general purpose plotting package suitable for a variety of applications. It is supplied with
all of the comments intact for the curious. The MARTHA version, MART HAP, has had all of the non-
public comments removed in order to save space. This section starts with a general description of the
plotting operation, with a section at the end that details the differences in MART HAP. Most of this
information is also contained in the workspace 'HELPPLOT' if you need help while in APL.

3.2 FIRST TIME USE

Before doing a plot, you will need to set up the video adapter and printer selections. Start by
running 'DEFAULT', which will strip out any existing selections. Then run 'ginit' and 'prinV.
These will prompt you with the currently supported hardware choices. If you don't see what you need,
you will have to add the appropriate codes by consulting the APL2000 Reference Manual. If you try to
run PLOT without this step, you will be prompted when the functions are called the first time.
WARNING: If you obtained this software from someone who has already been through the setup
procedure, the flags are set and the program will try to talk to your hardware accordingly. You have been
warned! It is remotely possible that HARDWARE DAMAGE will result. HINT: If you give a copy to
someone, run 'DEFAULT' before you give it to them to remove your flags.

3.3 BASIC FUNCTIONS

Functions typically called by the user have upper-case names, background functions have lower
case names. Everything has been setup to work with the 'EXPLAITsT documentation system if you need
help working with a particular function. There are four types of basic user functions: plotting functions,
formatting functions, setup functions, and help functions.

PLOTTING FUNCTIONS: There are 4 basic plotting functions:

PLOT, which does linear XY plots.
XYLOGPLOT, which does Log-Log plots.
XLOGPLOT, which does Linear Y vs Log X plots.
YLOGPLOT, which does Log Y vs Linear X plots.

All four functions are monadic, and can handle a variety of right arguments. The results for
different shape right arguments inputs are as follows:

19

1) Vector, or single row or column array: The output is a plot with the input on the vertical axis,
and the indices of the vector as the horizontal axis.

2) Two dimensional array, or single plane 3 dimensional array: The last column is the horizontal
variable, and each additional column to the left is a separate vertical variable. When plotted,
each trace can designated with a different color.

3) Multiplane array: Each plane is interpreted as a separate set of curves, following the rules for
2 dimensional or single plane arrays. The last column of each plane represents a different
horizontal variable. Note: It is possible to plot multiple curves with different numbers of
points by padding the smaller arrays with multiple copies of the array's end-points.

The color and linetype of each different plot variable are selected in rotation from the color
sequence set in the function RESTORE, and the linetype sequence set by the PLOTSEQ fiinction. If the
POINTS function is used to plot individual data points, the markers used are set by the 'mark'
background function.

Below is a sample plot showing multiple variables plotted with lines and markers, as well as a
multi-line title and X-axis label.

TO T;
E E:

THIS IS ft TEST OF THE 2 ROW
TITLE FUNCTION

S'
T
L
0

2.00E11 ,1111,1

B B
E E

1.50E11 -

TX
E
S
T !•
L
a

OOEll _

B B
E E

5.00E10

T-h T|
E El

B B
E E

-5.00E10
-5.00E9

22:41 12/28/96

-P" T

I i ■ . I ..a..
5.00E9 I.OOEIO 1.50E10 2.00E10 2.50E10

THIS IS ft TEST OF THE
2 ROW >«>LABEL FUNCTION

Figure 3.1. Sample plot with multiple variables

20

3.4 MARKING & LABELING WITH THE MOUSE

The various plotting fiinctions support markers and annotation with a mouse. The sequence of

marking and labeling options is as follows:

MODE: Pause (plot is on screen, no mouse readout at lower left)

Mouse Buttons: Left - enter Marker mode
Right - enter Text Label mode
Both - Return to text mode

MODE: Marker (mouse readout at lower left)

Mouse Buttons: Left - Place mark at mouse pointer location & enter Label Placement mode
Right - same as Left
Both - Return to Pause mode without marking

MODE: Text Label (mouse readout at lower left)

Mouse Buttons: Left - Place mark at pointer location, prompts for text entry
(CR terminates text and enters Text Placement mode)

Right - same as Left
Both - Return to Pause mode without marking

MODE:Label Placement (mouse readout at lower left is frozen)

Mouse Buttons: Left - Place mark and coordinate label at mouse pointer location, return to
Pause mode

Right - Place mark and coordinate beneath last label to make a table,
return to Pause

Both - Return to Pause mode without labeling

MODE: Text Placement (Text label frozen at lower left)

Mouse Buttons: Left - Place mark and text at mouse pointer location, return to Pause mode
Right - Place mark and text beneath last label to make a table, return to

Pause mode
Both - Return to Pause mode without placing text

3.5 PRINTING

Pressing <shift> P while in Pause mode (no data or text at lower left) will produce a screen dump to
your printer. Once the hardcopy process is complete, the program returns to Pause mode, rather than
leaving graphics. To exit the plotting function, press any other key, or both mouse buttons while in Pause

mode.

3.6 FORMATTING FUNCTIONS

There are 2 formatting functions, used to construct the right argument for the plotting functions
from various types of inputs. Both functions are dyadic. The functions are:

VS: This is used to associate a horizontal variable with one or more vertical variables. The syntax is:

21

PLOT Y VS X

In the simple case of X and Y being 2 equal length vectors, this will produce a plot with Y as the
vertical variable, and X as the horizontal variable. Y can also be an array, with each column
representing a different set of points to be plotted against X. X can be either a vector or a single
row or column array, but it must have the same number of elements as Y, or as Y has rows. The
result of VS is a three dimension array of depth 1, with X being the last column.

AND: This is used to associate multiple vertical variables with a horizontal variable, or muhiple XY
data sets for display in a single plot. The syntax is:

PLOT A AND B, or

PLOT A AND B VS X, or

PLOT (A VS XI) AND B VS X2

In the first two cases, A can be a vector, a single row or column array, or a multi-column 2
dimensional array, representing one or more vertical variables. B can be a vector, a single row or
column array, a multi-column 2 dimensional array, or a 3 dimensional array. If B represents
only a single list of data, A and B will be plotted against a horizontal axis of indices (I p, B). If
B is 2 or 3 dimensions, it is assumed to represent one or more vertical variables with the last
column as the horizontal variable. The AND function appends the left argument to the right
argument to produce a three dimensional array of depth 1, with the last column being the
horizontal variable.

In the second case, (A VS XI) will be a 3 dimensional array of depth 1. This signifies to the
AND fimction that the left argument represents a set of XY data, and not just more vertical
variables. In this case, AND will produce a 3 dimensional array with one plane for each set of
horizontal variables. If the left argument has a different number of rows or columns from the
right argument, the array with the smallest dimension will be padded with multiple copies of its
endpoint(s) to fill it out to conform to the larger array. These will not actually be plotted, but
they won't upset the autoscaling this way.

3.7 SETUP FUNCTIONS

There are a number of fiinctions that allow you to control and modify your plots:

AUTOSCALE: This turns autoscaling on and off The defauh is 'on'. It can be used with the dummy
function 'SET' and the variables 'ON (= 1) and 'OFF' (= 0) i.e. :

SET AUTOSCALE ON

DEFAULT: This restores everything to a known state, including resetting the video adapter and
printer selections to 'none'. Restores the axis labels and title to echo the variable name
(TITLEA=' TITLEA ' etc.).

GLABEL: This is used to write additional text to the graphics screen. The right argument is the
'user' coordinates of the text, which means XY coordinates in terms of the data you are

22

plotting, and the left argument is the text desired. GLABEL must be executed from
within the plotting routine while the graphics display is active. PLOT has a comment
indicating where GLABEL calls can be run. The label will be centered on the
coordinates. For labeling in absolute screen coordinates you can use the 'UGWRITE'
system function, or the plot background function 'cwrite', which allows text to be

centered.

POINTS: Controls whether data is plotted as continuous lines or as separate points. The default
is off (draws lines). The points of each successive data set are marked with a series of
symbols. POINTS can be used with SET, ON, and OFF similar to the AUTOSCALE

function i.e.:

SET POINTS ON

NOTE: The argument of POINTS can be a vector of I's and O's to alternate between
drawing points and lines.

PLOTSEQ: Controls the order of linetypes used for plotting. The argument is a string containing
any combination of the following linetype names: DRAW, DOT, SHORT DASH,
DOTDASH, LONGDASH. They can be separated by either spaces or commas.

RESTORE: This is a milder version of DEFAULT, in that it only resets the display parameters,
without erasing the labels or the video and printer settings. If you want to change the
default location or size of the plot on the screen, edit the Viewrport setting in
RESTORE, and run the function once.

SET: This is a 'dummy' function that absorbs the result of some functions that would
otherwise clutter up the screen.

WINDOW: This is used to set the plotting scales when autoscaling is off. The syntax is:

SET WINDOW XI , Yl , X2 , Y2
(lower left) (upper right)

To check the current setting, run WINDOW with an empty vector for an argument
(without SET) i.e.

WINDOW • '
0 0 12 9.nE~4 l.95B~3 (1 st 4 elements = current Window)

Note: For Log plots, the units are the exponents of the coordinates desired. For
example, if you want your plot to start at 10£~ 6, you would use ' ~ 6' for WINDOW.

VIEWPORT: This is used similar to the WINDOW function, but it controls the screen coordinates of
the plot border. The screen covers an area ranging from 0,0 at the lower left, to
1023,1023 at the upper right. The right argument is XY coordinates of the border
comers. The syntax is:

SET VIEWPORT XI , Yl , X2 , Yl

(lower left) (upper right)

23

To check the current setting, run VIEWPORT with an empty vector for an argument
(without SET) i.e.)

1
VIEWPORT ''

200 124 1000 924 0.782 0.782 (1st4 elements = Viewport) |

Note: For Log plots, the units are the exponents of the coordinates desired. For ^
example, if you want your plot to start at 10£~6, you would use '~6' for
VIEWPORT. 1

XGRID: This turns X axis grid lines on or off. The default is 'off. It can be used with the
dummy function SET and the variables 0N(=\) and OFF (= 0) i.e.: |

SET XGRID ON '

YGRID: This turns Y axis grid lines on or off. The default is 'off. Operation is similar to \

XGRID. I

3.8 HELP FUNCTIONS

The 3 standard help functions described in the introduction are available: ''

EXPLAIN ' NAME': Displays a more detailed summary of the ftmction NAME |

SUMMARY: Lists 1 line descriptions of'main' functions • '

SUMMARY ALL: Lists 1 line descriptions of all functions I
i
I

3.9 VARIABLES

This is a brief description of some of the variables used by PLOT. Names of variables normally j
modified by the user are in capital letters, and background variables are in lower-case. *

User Variables: The main variables the user will deal with are the labels: TITLEt^, X^LABEL, 5
and Yt^LABEL J

TITLE i^: This is a string or character matrix that will be placed at the center top of the page. There
is room for 3 lines of text. The default value is ' TITLED '.]

I
Xt LABEL: This is a string or character matrix that will be placed at centered under the plot. There is

room for 2 lines of text. The default value is ' X^ LABEL'. . |

Yi^LABEL: This is a string or character matrix that will be written vertically to the center left of the ^
plot. There is room for 2 columns of text. If the text is formatted as a matrix, each row
is assumed to the label for a plot variable, and will be colored to match. The screen can
hold roughly 40 characters per column.

ON: This is a dummy variable equal to ' 1' to be used to set plotting parameters on. |

OFF: This is a dummy variable equal to '0' to be used to set plotting parameters off.

Background Variables: These are required by the plotting functions and must be copied with the I

workspace. i

24

vw: This is a 2 x 6 matrix. The 1st row contains the Viewport coordinates and scale factors,
and the 2nd row contains the Window coordinates and scale factors.

xytic: This is a 2 x 5 matrix used by the Autoscaling and labeling routines. The 1st row is for
X, the 2nd row for Y. The last entry in each row is the approximate number of major tic

marks used in autoscaling.

flags: This contains a collection of numbers needed by various functions. There are at least 9

entries:

flags [1] = X axis Log flag (1 = Log)
flags [2] = Y axis Log flag (1 = Log)
flags [3] = Autoscale flag (1 = Autoscale On)
f lags [4] = Grid flag (1 = X, 2 = Y, 3 = Both)
flags [5] = Display flag (sets video adapter in 'ginit')
fl ags [6] = Printer flag (sets printer in 'printplot')
fl ags [7] = Spare (not used)
fl ags [8] = Reserved for future use
flags [9-?] = Color numbers for sequential plot lines

lines: This is a matrix containing the linetype codes set by PLOTSEQ

pt s: A vector of I's and O's defining which data sets will be plotted as points (I's) or
connected lines (O's). See POINTS function.

3.10 SPACE (THE FINAL FRONTIER..)

If you are using LLPLOT and are short of memory, you can use the function PDECOM located in
the LLUTILTY workspace to remove the regular comments from the functions. PDECOM leaves all of
the 'public comments' used by the documentation functions like EXPLAIN. If you are still short on
room, you can also hardwire your video adapter and printer and strip out the extra code and comments

from 'ginit' and 'print'.

3.11 CUSTOMIZING

There are a couple of things you may wish to 'play' with. If you don't like the size, placement or
shape of the plot, you can change the coordinates called with the VIEWPORT function in RESTORE. If
you want to put additional text on your plot, you can use the GLABEL function described above. This
must be executed within PLOT at the place indicated by a comment. You can also add, subtract, or
change the plot colors (stored in 'flags') by altering the vector in RESTORE.

3.12 MTlRraa PLOTTING

This is a description of the special features of the APL plotting workspace that pertain to its use
with MARTHA. The 'MARTHAP' workspace can be used for all sorts of general plotting, but when used
to display MARTHA results, the XY labels are automatically set to match the analysis parameters.

In general, the plotting functions in this workspace should perform exactly like the original line-
terminal character plot function in MARTHA. It has been tested with a variety of MARTHA simulations.

25

and displays the appropriate labels, curves etc. There are three functions that have special code for
MARTHA use: PLOT, AND, and VS. All three look for two MARTHA variables: 'hd', which is a
character vector containing labeling information for the last analysis executed, and 'of\ which is a
numerical vector containing scaling and other plotting data. If either of these do not exist in the
workspace, or if hd is empty, the plot is dravm using the normal plotting routines and labels, so there is
no need to carry around extra variables if the plotting functions are used for other work.

A brief description of the MARTHA use of PLOT, AND, and VS follows:

PLOT: This should be fairly transparent. All MARTHA requirements should be handled
automatically. Because PLOT is called by XLOGPLOT, YLOGPLOT and
XYLOGPLOT, all of these can be used as well.

AND: This is new to MARTHA, and is primarily of use if you have an old result you wish to
plot along with a new analysis. It works the same as for regular plots, except it checks
for and removes duplicate frequency data. The Y axis labels won't necessarily match the
data, but you can fake this by creating a new hd. hd must be formatted as a string, with
12 spaces per label, and 24 spaces tacked on the end. The labels are entered from right to
left, to match the plotting order of the data.

VS: If used in a MARTHA analysis, this behaves identically to the old VS in MARTHA. For
those of you unfamiliar with this, MARTHA plots any results against the one variable
preceded by VS in the argument string. For example:

PLOT DB SZl DB Sll VS DB S12 DB S22 OF NET

would plot dB S21, dB Sll, and dB S22 against dB S12.

There are also two function for plotting Smith Charts; 'SMITH' and the background function 'cp\
Running EXPLAIN on SMITH gives:

EXPLAIN 'SMITH'

SMITH Z — Plots Smith chart from MARTHA impedance data
For example, to plot the reflection coefficient of a 1-port:

SMITH SC OF Net

3.13 ACKNOWLEDGMENTS

Mark Stevens did the bulk of the work on the Log plotting capabilities, and helped debug and
polish several other features. Don Boroson originated the approach used to get multiple linetypes and
John Kaufmann provided a great deal of useful feedback on features for the latest version. Brian Clifton
originated the Smith Chart functions.

26

4. LIM?iRrHa WORKSPACE

ENHANCED MARTHA CIRCUIT ANALYSIS WORKSPACE

4.1 INTRODUCTION

This workspace is a combination of a number of MARTHA and LLAMA workspaces, and contains
the most frequently used functions for general circuit analysis work. The core is the main MARTHA
workspace, but with all of the plotting functions replaced with the MART HAP versions. It also contains a
number of element, wiring and response functions that are frequently needed from the MARTHA library
workspaces. In addition, there are a number of small utility programs for setting frequency sweeps,
calculating Pi and Tee pad values etc. This workspace (assumed to be in Library 8) is copied into many
of the other LLAMA workspaces by the COPYmS function when they are)LOADed. The objects from
LLMARTHA are then erased by the LEAVE function to avoid cluttering up your disk with muhiple
copies of LLMARTHA. Section 1, which describes the LLUTILTY workspace, contains detailed
information on how this system works.

Documentation of the MARTHA functions can be found in the MARTHA manuals, or the
HOWMARTH workspace. The plotting functions all work with the 'EXPLAUsT function, as do all of the
utility functions. A detailed explanation of the plotting system can be found in Section 3, or in the
workspace 'HELPPLOT, with MARTHA specific information in the variable 'HLPMPLOT.

Below are some comments and the EXPLAIN resuhs for the utility functions that are unique to the

LLMARTHA workspace:

4.2 FREQUENCY VECTOR FUNCTIONS

MARTHA uses the global variable 'F' to contain the frequency vector for analyzing circuits. There
are three small utility functions that help set up various types of frequency vectors:

EXPLAIN 'LINF'

LINF Fstart (MHz) ,Fstop (MHz) ,Nsteps — Creates a Global Linear Freq Vector 'F'
Creates Nsteps+1 points, so that frequency steps come out even
LLAMA Ver. 1.0, 12/31/96, Copyright 1996 by M.I.T.

EXPLAIN 'LOGF'

LOGF Fstart(MHz) ,Fstop(MHz) ,Nsteps — Creates a Global Log Freq Vector 'F'
Creates Nsteps+1 points, so that frequency steps come out even
LLAMA Ver. 1.0, 12/31/96, Copyright 1996 by M.I.T.

EXPLAIN 'FZEROANDF'

FZEROANDF Fzero (Hz) , i^F(Hz) ,Npts — Creates a Freq Vector Centered on Fzero
Creates a global 'F' variable over Fzero +/- AF/2, with Npts points
LLAMA Ver. 1.0, 12/31/96, Copyright 1996 by M.I.T.

4.3 ATTENUATOR FUNCTIONS

There are two functions that create MARTHA network 'pads':

27

EXPLAIN 'PIPAD'

Net -^ PIPAD Atten(dB) — Creates a MARTHA network Pi-Pad Attenuator
LLAMA Ver. 1.0, 12/31/96, Copyright 1996 by M.I.T.

EXPLAIN 'TPAD'

Net *- TPAD Atten(dB) — Creates a MARTHA network T-Pad Attenuator
LLAMA Ver. 1.0, 12/31/96, Copyright 1996 by M.I.T.

4.4 CIRCUIT EQUIVALENT FUNCTIONS

There are two functions that are designed to model resonant LC circuits from measured data placed
in a MARTHA FOF (Function Of Frequency):

EXPLAIN 'RPCPOF'

Out*-RPCPOF FOF — Computes Equiv. Parallel Resistance and Capacitance
Analyzes an impedance FOF (2 col), or 1st parameter in a larger FOF
LLAMA Ver. 1.0, 12/31/96, Copyright 1996 by M.I.T.

EXPLAIN 'TORPXP'

Out^TORPXP FOF — Computes Equiv. Parallel Resistance and Reactance
Analyzes an impedance FOF (2 col), or 1st parameter in a larger FOF
LLAMA Ver. 1.0, 12/31/96, Copyright 1996 by M.I.T.

4.5 MISCELLANEOUS FUNCTIONS

There are two other fimctions unique to LLMARTHA:

EXPLAIN 'WILKENS0NA2'

Net*-WILKENS0NA2 Fzero(Hz) — Creates 3-Port Wilkenson Pwr Divider
Designed to be used with nodal wiring functions (see LLMARTHAD WS)
LLAMA Ver. 1.0, 12/31/96, Copyright 1996 by M.I.T.

EXPLAIN 'ZNORM'

ZNORM Zo — Sets All MARTHA Impedances = Zo. If 0=pZo, Lists Current Values
Sets ZG '- ZL - ZN ^ ZNIN ^ ZNOUT *- Zo
LLAMA Ver. 1.0, 12/31/96, Copyright 1996 by M.I.T.

4.6 ACKNOWLEDGMENTS

The original selection of commonly used MARTHA functions is from Dave Hodsdon, who also

wrote a number of the utility routines.

28

5. I,L*1SDIM WORKSPACE

'FULL FIELD' MICROSTRIP TRANSMISSION-LINE ANALYSIS

5.1 INTRODUCTION

Microstrip transmission line circuits are very useful, and relatively easy to fabricate.
Unfortunately, the propagation of signals on microstrip lines is not easy to analyze, and there are no exact
closed-form solutions for even the simplest of geometries. Over the years, a large number of numerical
and approximate solutions have been developed to deal with this. One of the most accurate and
successful solutions was the MSTRIP FORTRAN program developed by Bryant and Weiss in the late
60's [5.1, 5.2]. This used numerical integration of the field equations to calculate the impedances of
single and coupled-pair microstrip lines. This program was used as the foundation of a number of closed-
form curve-fit approximations in many RF CAD programs.

In the late 70's, an improved version of MSTRIP [5.3] was modified to be accessible fi-om APL
running on Lincoln Lab's mainfi-ame. Although slow, this gave users access to very accurate microstrip
parameters and allowed the development of microstrip filter synthesis workspaces like LLCOMBFL (see
Section 6). When the Lincoln mainframe was decommissioned, an intense rescue effort was made to
retain this capability. This effort was successful, and a fast accurate version of MSTRIP has been
implemented completely in APL, and is included in the LLMSDIM workspace.

In addition to the MSTRIP function, LLMSDIAf includes three additional functions that are useful
for microstrip filter work, as well as a number of background functions required by MSTRIP.

5.2 MSTRIP FUNCTION

The EXPLAIN resuh for MSTRIP is shown below. The function handles both single and
coupled-pair microstrip lines. All of the dimensions are normalized to the substrate thickness, and are
therefore unitless. The one thing to watch out for is that the cover height is specified FROM THE
GROUNDPLANE. This is not the way many programs work, but this convention was used in the
original program, and has been maintained for compatibility. MSTRIP will check the cover height to
make sure that it is either zero (no cover), or > 2. This catches the case where the cover height is equal to
the substrate thickness, but is mistakenly referred to the top of the substrate, rather than the ground plane.
MSTRIP can generate a table of results for different width lines by specifying a 'm/HV (width
increment) and 'NT' (number of 'tries'). For a single line (or pair), these are set to zero and 1
respectively. The output includes a copy of the input parameters and then (for a single line) the
calculated impedance, velocity, effective dielectric constant and capacitance of the line. For coupled
lines, the output parameters are the same, only they are presented in pairs of even- and odd-mode
parameters (i.e. Zoe and Zoo). An error is reported when analyzing coupled lines if Zoe < Zoo. This can
occur with light coupling if the numerical integration parameters within MSTRIP aren't set correctly (see

Section 5.4 for details).

out^MSTRIP in — Full-Field Microstrip Line Analysis
Computes the characteristics of single and coupled microstrip lines
This is an APL version of the FORTRAN program MSTRIP described in:
J.A. Weiss, ADVANCES IN MICROWAVES, Vol. 8, pp. 295-320;

Academic Press, 1974.

29

The input and output formats match the old mainframe APL MSTRIP to
be compatible with other existing APL functions.

'in' is a vector, or an N ^ 5 or 6 matrix. 'in' is dimensionless
Each row is: W/Hl, m/Hl, NT, H2/H1, €r, [S/Hl]

T
{NT = No. of AIV/Hl increments) Coupled Lines Only

'out' is always a matrix {although it may have only 1 row)
For Coupled Lines: pout = NT><12
out= €r, H2/HI, S/Hl, W/Hl, Zoe, Zoo, Ve, Vo, eeffe, €effo, Ce, Co
For Single Lines: pout = NT>^1
out= €r, H2/H1, W/Hl, Zo, V, €eff, C
'out' units are Meters/Sec for Vs, and Farads/Meter for Cs

TOPOLOGY: cover
T
I

I- W -I' S—-*- W -*\ H2

dielectric €r HI i
GROUND PLANE T

Note'. H2 is measured w.r.t. Ground Plane, NOT top of substrate'. \

5.3 AUXILIARY FUNCTIONS

There are three additional user functions in the workspace; 'KL^MSTRIP\ 'ZFROMKL' and
'WSFROMZ'. KLt^MSTRIP is used to calculate the coupling factor 'KL' for coupled microstrip lines.
This parameter is used in several filter synthesis procedures. ZFROMKL is used to compute the odd-
mode impedance of a pair of coupled lines given the even mode impedance and the coupling factor.
WSFROMZ computes the coupled-line width and spacing required to obtain a particular odd- and even-

mode impedance.

out'^KL^MSTRIP params — Adds the Coupling 'KL' to the Output of MSTRIP
Inputs and outputs are identical to MSTRIP except that
KL = [Zoe-Zoo]^2xZoo is catenated onto the end of each output line
'params' is a vector, or an N ^ 6 matrix
Each row is: W/Hl,m/Hl,NT,H2/Hl,€r,S/Hl

{NT = # OF Api7/ifl Increments)
'params' is dimensionless
'out' is also a vector or matrix. pout = NT^12
out= €r,H2/HI,S/Hl,W/Hl,Zoe, Zoo, Ve,Vo, €effe,€effo,Ce,Co,KL

Zoe, Zoo-^ZFROMKL Zoe,KL — Computes Zoo, Given Zoe and KL

out-^Ldummy WSFROMZ params — Computes W/H and S/H from Zoe and Zoo
Synthesizes W/H and S/H for coupled microstrip lines, given Zoe and
Zoo. Uses Newton's Method and MSTRIP to compute line parameters.
Inputs and outputs are compatible with old mainframe WSFROMZ.

SYNTAX: out *- <Ldummy> WSFROMZ H2/H1, €r, Zoe, Zoo, <S, W>

30

L, S, and W are optional 'place-keepers' required
only to maintain compatibility with Mainframe version

'out' = Last value of:
er, H2/H1, S/Hl, W/Hl, Zoe, Zoo, Ve, Vo, €effe, €effo, Ce, Co, KL

(Same as MSTRIP output with KL = [Zoe-Zoo]^2^Zoo catenated on end)

REF: Stanislaw Rosloniec, "Design of Coupled Microstrip Lines By
Optimization Methods" MTT-35 #11, Nov 1987 pp. 1072-1074

5.4 ACCURACY, SPEED, AND MEMORY TRADEOFFS

Inside the MSTRIP program, there are three different places where the computation is 'sub-
divided'. The strips are divided into 'M' sub-strips, the Green's function integration is broken up into
'INT sub-integrals, and the integration itself is performed with an order 'G' Gauss-Legendre Quadrature
routine. The number of these sub-divisions has a big effect on the accuracy of the results, but it also
affects the speed and memory requirements of the program. Extensive testing has been done to verify the
basic operation of the translation, as well as to determine the trade-offs among the three parameters M,
INT, and G. The results are described in detail in three sections below.

5.4.1 Accuracy

The first concern was that the results are accurate. In order to verify the performance of the
program, a set of 83 test cases was constructed. The first 81 tests include all possible combinations of the
following parameters:

W/Hi = 0.1, 1, 10
S/Hi = 0.1, 1, 10
H2/H1 = 2, 11, 0 (no cover)
Diel. = 1, 5, 10

Present curve-fit formulas break down at parameters that can be encountered in the design of Lange
Couplers, or with ceramic and super-conducting materials. The following two tests were included to
check the performance for extremely narrow strips and at high dielectrics:

W/Hi=0.01, S/Hi=0.01, er=9.9. No cover
W/Hi=0.2, S/Hi=l, Sr=30, No cover

Internally, MSTRIP starts by computing the strip capacitances and effective dielectric constants,
and then derives the impedances and velocities from those. To minimize storage, only the strip
capacitances and effective dielectrics were compared.

The first standard for comparison was the battered remains of the old APL/FORTRAN program
running on the MIT Campus mainframe. Although difficuh to run, it did store valid results in a file
before it crashed. When the new program was run with i^20, INT=S, and G=32 the results match to
better than 1 part in 10^ for all 83 cases. These differences are probably due to improvements made in
the accuracy of some of the integral routines.

31

The next step was to increase the number of sub-strips, M, and compare the results against an
analytical standard using a technique from Ref. [5.3]. With the cover height set equal to the substrate
thickness (H2/Hi=2), microstrip produces identical impedances to a stripline geometry filled with a
dielectric of Efst = '/sC^rMS + ^)- The stripline impedances can be calculated exactly, and Table II
from Ref [5.2] includes a comparison of the impedances calculated by the original MSTRIP program, the
improved MSTRIP2 (which is the FORTRAN program we had been running), and the stripline values.
The table below (Table 5.1) compares the MSTRIP2 and stripline results from that table to results
obtained with the new API program running with M=100, INr=16, and G=32.

Table 5.1. Computed Impedance Comparison Of Coupled Microstrip Lines

FORTRAN MSTRIP*, API. MSTRIP**, and Balanced Stripline
H2/H1=2, Er=9.6 for Microstrip, 5.3 for Stripline

FORTRAN APL STRIP- FORTRAN APL SIKIP-
MSrKIP2 MSTRIP LINE MSTRIP2 MSTRIP LINE

S/H1 W/H1 Zee Zee Zee Zoo Zoo Zoo

0.5 0.3 89.82 89.46 89.36 58.26 57.87 57.77

0.8 57.25 56.93 56.84 40.60 40.18 40.07

1.3 42.46 42.19 42.12 32.43 32.01 31.90

1.0 0.3 81.27 80.91 80.81 67.29 66.92 66.81

0.8 53.07 52.74 52.65 45.63 45.26 45.16

1.3 40.07 39.78 39.70 35.60 35.25 35.16

2.0 0.3 75.77 75.41 75.31 72.89 72.52 72.42

0.8 50.22 49.88 49.78 48.68 48.33 48.23

1.3 38.39 38.08 38.00 37.47 37.14 37.06

4.0 0.3 74.39 74.03 73.93 74.27 73.91 73.80

0.8 49.48 49.14 49.05 49.42 49.07 48.98

1.3 37.95 37.64 37.55 37.91 37.60 37.51

10.0 0.3 74.33 73.97 73.87 74.33 73.97 73.87

0.8 48.45 49.11 49.01 49.45 49.11 49.01

1.3 37.93 37.62 37.53 37.93 37.62 37.53

* FORTRAN MSTRIP2 using 20 sub-strips ** APL MSTRIP using 100 sub-strips

For the cases shown, the errors between the new program and the stripline result are typically 0.1
Ohms or less. At M=20, the MSTRIP2 program shows errors of 0.6 to 0.3 Ohms. Unfortunately, some
internal computations are proportional to M2, so going to 100 strips from 20 increases the load by a factor
of 25, which causes severe memory and speed problems. This is a fairly heavy penalty to pay for a few
lOthsofanOhm!

In order to better understand the tradeoffs among the three parameters; M, INT, and G, a number of
experiments were done using the 81 standard tests mentioned above. The baseline was a table of results
with M=60, INT=\6, and G=32. Percentage errors were calculated for the capacitances and effective
dielectrics for comparison. The results are summarized below:

32

VARYING 'AT: Mis the most critical parameter, and is most sensitive to tight coupling with
wide strips (W/Hi=10 and S/Hi=0.1) particularly with low dielectrics.
Reducing Mto 40 introduced differences of-1.5%, and M=30 increased the
differences to -3%. With i^20 (used by the FORTRAN MSTRIP2 program)
errors were as large as 5.2%. An M of 40 is probably a good compromise
between accuracy and performance.

VARYING 'IM": Reducing INT from 16 to 4 produced differences of ~1 ppm, when
W/Hi=S/Hi=10. IiVr=2 increased these errors to-1%. IWr=4 appears to be
quite adequate, and cuts the computational load from MSTRIP2 by half

VARYING 'G': Reducing G from 32 to 20 introduced differences of-0.1% for the case of
W/Hi=10, S/Hi=10, Er=10, H2/Hi=ll. To be safe, G should probably be left

at 32.

5.4.2 Accuracy Enhancements

For a typical range of strip widths, line spacings, dielectrics etc., the best compromise for general
use seemed to be M=40, INT=4, and G=32. The combline filter synthesis routines in the LLCOMBFL
workspace call MSTRIP repeatedly, and G was set to 20 in that version to get slightly faster response.

After the analysis above had been completed, and while developing some narrow band filter
designs, a problem was discovered in MSTRIP's results. The narrow bandwidths require lightly coupled
lines, and MSTRIP Was predicting even-mode impedances lower than the odd-mode impedance, which
is physically impossible. This occurred at S/H values above roughly 20, but it was unclear how
inaccurate the results might be at narrower spacings. The original tests only evaluated MSTRIP up to an
S/H of 10, where there was no indication of trouble.

The spacing at which Zoe first becomes less than Zoo is largely independent of the other microstrip
dimensions and 8r, and grows roughly linearly as the integration parameter INT is increased. Going
back to INT=Z (which was used in the original FORTRAN program) moved the problem out to S/H >
40. Rather than pay a computational penalty by fixing INT to a large value, INT can be increased as a
fiinction of S/H. The new version of APL MSTRIP uses INT=4 up to S/H=16, and increases INT by 1
for every increase of 4 in S/H beyond that. For most applications, there will be no speed penalty at all. A
quick test of the LLCOMBFL filter workspace showed that usmg G=20 aggravates the problem, so G was

set back to 32 there as well.

Figure 5.1 shows a comparison of the even and odd-mode impedances calculated with INT=4, and
using the new IWr=f(S/H). When IJVr=4 and the problem manifests itself, the errors grow wildly as
S/H increases. However, the spacings required to get serious errors aren't likely to be encountered except
in extreme cases. When the problem was discovered, fixing MSTRIP was the only way to find out how
large the errors might be, because none of the curve-fit microstrip solutions are valid at these spacings.

33

EFFECT OF INTEGRftTION PPlRftMETER 'INT' ON MSTRIP
COUPLED LINE IMPEDfiNCES < Ll/H=l, er=10, NO COVER>

so.o 22:51 08/14/9S

-

' 1 ' ' ' ' 1 ' 1 • •

49.5 7 .-•' \ 1 -

- Zoe i; -j

49.O -
^

Zoo \ \ : ;: _ : '-
: '■

", ; :
48.5

; : ^

48.O . 1 1 . .,,!.■. . 1 1 1 ,....!.. . 1 '

18 20

STRIP SEPftEfiTION, S/H

22 24

Figure 5.1. Coupled microstrip impedance problem (new version ■ old version
■■)

5.4.3 Speed

Because APL is an interpreted language, program loops require re-interpretation of the code each
time through the loop. FORTRAN makes extensive use of loops, because it lacks the array operations
available in APL. The original translation of MSTRIP into APL retained all but the simplest loops, and
required almost a full minute to analyze a single pair of coupled lines (using M=2Q, INT=S, G=10) on a
33 MHz '486 PC. The integration routine at the heart of the Green's function analysis was being called
(and re-interpreted) 4,720 times. By converting the integration to a three dimensional array computation,
it gets called twice. Similar changes were made in other parts of the code, and the execution time was
reduced to 1.48 seconds!

Unfortunately, the accuracy issues described above indicated that M=40, INT=4, and G=32 may be
a better parameter set to work with, and this boosted the execution time back up to 5.7 seconds. This is
probably comparable to what the 1978 mainframe took to produce less accurate results. Depending on
what sort of materials and dimensions you are working with, it may be possible to get perfectly adequate
results using M=20 and G=20, which should run in under 30 seconds on a '286 machine. Changing M is a
simple 1 line edit in the main MSTRIP function. Altering G requires a single change in the 'glqint'
function, but it also requires a background variable containing the appropriate weights and abscissas. The
variables for G=32 and G=20 are included in the LLM5DIM workspace.

The last major change affecting speed was actually necessitated by memory limitations (see below).
In order to reduce the memory requirements during the Green's function integration, the loop over INT
sub-divisions was placed back into the 'mgreen' function. This loop is only executed 4 times now (for
all but very light coupling), so the overhead of re-interpreting each pass is minimal. This increased the

34

execution time by less than 5%. For people working with M=20, the function mgreen is clearly
commented so that this loop can be eliminated again, if desired.

5.4.4 Speed Enhancements

Since the work above was completed, some additional speed improvements have been made. The
original FORTRAN program included a fairly direct coding of the Green's function for microstrip lines.
Doug Dugas developed several simplifications based on trigonometric identities that reduce the
complexity of the computations significantly. Applying these changes to the APL 'mgreen' function
resulted in a 17% speed improvement. Personal computer technology has also improved. On a 100 MHz
Pentium system, MSTRIP runs in 1.7 seconds under APL+PC and in 0.44 seconds under APL+DOS
(which uses 32 bit operations).

5.4.5 Memory

With the major computational loops removed from the APL code, there are two places where the
memory requirements can produce a WS FULL message. The first is in the Green's function integration
routines, and the second involves matrix inversions. APL uses 64 bit floating point numbers, so it uses
up memory very quickly on large arrays.

The Green's function integration is performed using an AT by INT by G/2 array. For M=40, INT=4,
and G=32, this requires working with an array of 2,560 floating point numbers (-20 Kbytes), including
operations with background arrays of similar size. This will execute in APL2000's APL+PC standard
system, with DOS 5.0, but requires an efficient memory manager to fi-ee up as much of DOS's 640K
memory as possible. There is no way it could execute within a MARTHA application. Eliminating the
INT dimension from the array reduces the space requirements by a factor of 4, at only a minor impact on
speed (see above).

The second memory bottleneck involves matrix inversion. After the Green's function is integrated,
an W by M matrix is formed, which must be inverted to compute the charge distribution on the strips.
Although APL has an exceedingly efficient matrix inversion operator, it has its limits. M=40 works fine,
but because the amount of computation tends to grow as M^, larger Ms could be a problem. M=60
appears to be about the largest array that can be handled in APL2000's APL+PC. This should provide
more than adequate accuracy for all but the most demanding jobs. The newer APL interpreters available
{APL+DOS and APL+WIN) can use high memory, which eliminates the problem entirely.

5.5 ACKNOWLEDGMENTS

Doug Dugas did a lot of the archeological work required to get the FORTRAN source code for
MSTRIP2 and helped cross-check the APL version against his C version. Doug developed the simplified
equations to speed up the mgreen function, and was the first to suggest the INT parameter as the likely
source of the wide spacing problem. Jerry Weiss was also very helpful in providing some historical
insight and references on the original program. The three auxiliary fimctions were originally developed
on the Lincoln mainframe computer by Dave Hodsdon.

35

5.6 REFERENCES

5.1 Bryant, T.G., and Weiss, J. A., "Parameters of Microstrip Transmission Lines And of Coupled
Pairs of Microstrip Lines," IEEE Trans. Microwave Theory & Techniques, Vol. 16,1968, pp.

1021-1027

5.2 J.A. Weiss, "Microwave Propagation on Coupled Pairs of Microstrip Transmission Lines,"
ADVANCES IN MICROWAVES, Vol.8 Academic Press, New York, 1974, pp. 295-320

5.3 J.A. Weiss, R.S. Withers & R.C. Lewis, "MSTRIP2: Parameters of Microstrip Transmission
Lines and of Coupled Pairs of Lines - 1978 Version and Its Application," Lincoln Laboratory
Technical Report No. 600, 4 June 1982

36

6. LLCOMBFX WORKSPACE

mCROSTRIP COMBLINE FILTER SYNTHESIS

6.1 INTRODUCTION

This workspace contains functions to synthesize tap-fed microstrip combline filters. The synthesis
starts by executing the 'HELP' function, which prompts the user for the required inputs. Following the
completion of a given design, it may be analyzed using any available 'MARTHA' functions. A display of
all of the filter parameters is produced, and they are stored for editing later.

In order to have all the MARTHA functions available to work with the results, loading LLCOMBFL
automatically copies the LLMARTHA workspace, which is assumed to be in Library 8. If you are using a
different library for the LLAMA workspaces, you with need to edit the argument of the COPY^WS
command in the STARt function as described in Sections 1.8 and 2.2.

6.2 TOPOLOGY

The combline filter consists of a number of electrically-short (« Vi X) parallel coupled microstrip
lines. The layout of a combline filter is shown in Figure 6.1. The lines are grounded on one end, and
resonated by capacitors (usually variable) on the far end. The line and substrate parameters are specified
to be compatible with the MSTRIP analysis program.

ci C2

z*-* 1
1

(1) 1

- Wr 1

i
1 r

IN O- 1
L

Wc
t 1
It 1
; 1

1 1

T
S12

(2)

r

=> Ls
V

Ir

3 Ls
V

C(N-l)

(W-1)

^SN-1,N-
J

= Ls
V

C{N)

r

_L

(W) I
I

Wr \^

Nc \-0 OUT
 I

h ic ->!
"I

=> Ls
V

NOTE: All resonators are the same length and width

Figure 6.1. Layout of combline filter

37

Figure 6.2 shows how the line-spacing and widths are dimensioned, along with the substrate
thickness and cover-height. Cover-height is measured relative to Ground Plane, not substrate!

COVER
t
1 NOTE\ if2/if 1=0

-Wr^\^ S12 -^l^Wr^l*- S23 -*\^Wr^\ H2 puts cover at
I Infinity

T 1
dielectric €r ^ifl I

4 I
GROUND PLANE

Figure 6.2. Cross-section of combline filter substrate & cover

6.3 PARAMETER INPUT

'HELP' prompts the user for the following 14 inputs:

1. In-Band Ripple (dB): 0 = Butterworth Response
(>0) = Chebyshev Response

~ 1 = Constant K Response
~2 = Gaussian Amplitude Response

2. Number of Poles (>2)

3. Center Frequency in MHz
4. 3 dB (!) Bandwidth in MHz (Regardless of Filter type)

5. Source Resistance in Ohms

6. Resonator Line Width in Inches (IVr)

7. Resonator Electrical Length in iDegrees

8. Resonator 'Short' Inductance in NanoHenries

9. Substrate Relative Dielectric Constant (£r)

10. Substrate Thickness in Inches {HI)

11. Cover Height in Inches (H2)

12. Input Coupling Line Width in Inches {Wc)

13. Input Coupling Line Length in Inches (Ic)

14. Filter Name: Any valid APL variable name. This becomes a Global variable. After the
analysis, this variable will contain a MARTHA compatible network description
of the filter.

38

6.4 COMBLINE FILTER EXAMPLE

Below is an example listing of a session used to create a 2"^ order Butterworth filter:

HELP
N POLE MICROSTRIP COMBLINE FILTER SYNTHESIS

DO YOU WISH TO MODIFY AN OLD DESIGN {Y OR N)7 N
ENTER RIPPLE{DB), POLES, CENTER FREQ(MHZ), BN{MHZ,3 DB), RGEN{OHMS)

D:
0 2 1000 100 50

ENTER RESONATOR WIDTH(INCHES), LENGTH(DEC), SHORT INDUCTANCE(NANOHENRIES)

D:
0.1 40 0.2

ENTER SUBSTRATE DIELECTRIC(ER), THICKNESS(HI,INCHES), COVER

HEIGHT(H2,INCHES)

Q:
2.56 0.06 1

ENTER COUPLING LINE WIDTH(WT,INCHES), LENGTH(LT,INCHES)

U:
0.1 0.5

WHAT IS FLT NETWORK NAME TO BEl DEMO

NO PARAMETER VALUE UNITS

1 RIPPLE 000 DB

2 POLES 2 000

3 CENTER FREQUENCY 1000 000 MHZ

4 BANDWIDTH, 3DB 100 000 MHZ

5 SOURCE RESISTANCE 50 000 OHMS

6 RESONATOR WIDTH 100 INCHES

7 RESONATOR LENGTH 40 000 DEG

8 SHORT INDUCTANCE 200 NANOHENRIES

9 SUBSTRATE DIELECTRIC 2 .560

10 SUBSTRATE THICKNESS .060 INCHES

11 COVER HEIGHT 1 .000 INCHES

12 INPUT LINE WIDTH .100 INCHES

13 INPUT LINE LENGTH .500 INCHES

14 FILTER NAME DEMO

ENTER PARAMETER NO. TO BE CHANGED (0, IF OK) : 0 (-^NOTE! You can edit your inputs
SYNTHESIS STARTED AT 14:59 HOURS, FEB 07, 1992 before beginning synthesis)

39

6.5 SAMPLE COMBLINE SYNTHESIS OUTPUT

8 LLMARTHA PCOPIED
MICROSTRIP COMBLINE FILTER 'DEMO
14:59 HOURS, FEE 07, 1992

{<- ** SEE NOTE BELOW **)

CENTER FREQUENCY
3 DB BANDWIDTH
IN-BAND RIPPLE
NUMBER OF POLES
SOURCE RESISTANCE
FILTER RESISTANCE
SHORT INDUCTANCE

RESONATOR IMPEDANCE
RESONATOR CAPACITANCE
RESONATOR CAPACITANCE

RESONATOR LINE WIDTH
RESONATOR LINE LENGTH
RESONATOR SPACING

COUPLING LINE IMPEDANCE
COUPLING LINE WIDTH
COUPLING LINE LENGTH
COUPLING LINE TAP

SUBSTRATE DIELECTRIC
SUBSTRATE THICKNESS
COVER HEIGHT

1000.000 MHZ
100.000 MHZ

.000 DB
2.000

50.000 OHMS

621.880 OHMS

.200 NANOHENRIES

73.347 OHMS
2.875 PF (1)
2.875 PF (2)

.100 INCHES

.897 INCHES (40 DEG)

.123 INCHES (1-2)

69.076 OHMS
.100 INCHES
.500 INCHES
.249 INCHES

2.560
.060 INCHES

1.000 INCHES

ELEMENT MATRIX:

2.00E-10 .022775 .006322 .012700 69.08 2.09E08 2.053 1.667 2.87£-12

622

73.35 64.66 2.05f;08 2.14E08 2.134 1.962 1.667 2.050 2.87E-12

.07£~2

RUN TIME IS .68 MINUTES

* * NOTE: In order to run, the functions ' ge t cr' and ' ge 11 ap' may need editing to contain the
correct library number of your LLMARTHA workspace!

40

6.6 ELEMENT MATRIX KEY

1 St Row Elements: 1) Short Inductance (Henries)

2) Resonator Length (Meters)

3) Tap Position (Meters)

4) Input Line Length (Meters)

5) Input Line Zo (Ohms)

6) Input line Phase Velocity (Meters/Sec)

7) Input Line Effective Dielectric Constant

8) Input Line Width, P^c/Hl

9) 1st Resonator Capacitor, Cl (Farads)

10) Impedance at Resonator End (Z* on topology diagram)

Nth Row Elements 1) Even Mode Impedance (Line N-1 to N) (Ohms)

2) Odd Mode Impedance (Line N-1 to N) (Ohms)

3) Even Mode Velocity (Line N-1 to N) (Meters/Second)

4) Odd Mode Velocity (Line N-1 to N) (Meters/Second)

5) Even Mode Effective Dielectric (Line N-1 to N)

6) Odd Mode Effective Dielectric (Line N-1 to N)

7) Resonator Width, Wr/Hl

8) Resonator Spacing, (S(N-1),N)/H1

9) Resonator Capacitor, C(N) (Farads)

10) Coupling Coefficient, fC(N-l),N

6.7 ACKNOWLEDGMENTS

This workspace was originally developed on the Lincoln Lab mainframe by Dave Hodsdon, using
the old FORTRAN version of MSTRIP (see the LLMSDIM section for more details on this).

41

7. LLFILTBR WORKSPACE

FILTER DESIGN WORKSPACE

7.1 INTRODUCTION

This workspace contains a variety of functions for synthesizing and modifying passive and active
filters. All of the functions have been set up to work with the EXPLAIN function, and most are designed
to prompt the user for input if an empty vector is given as a right argument. For example, executing

LPGAUSS ''

produces the following prompt for input:

Npoles,Fcutoff(Hz),Zo(Ohms):

The functions in this workspace have been grouped into eleven different categories, and are
described in detail below. In addition to calculating fairly standard LC filters, there are a number of
functions to aid in designing practical filters with realizable component values using impedance
transformations and the like. Many of the fimctions allow the inclusion of parasitics, and produce
MARTHA network descriptions that can be analyzed, plotted or combined with other circuits. Because
this workspace makes extensive use of MARTHA, loading LLFILTER copies the LLMARTHA
workspace (assumed to be in Library 8). If you are not using library 8, you with need to edit the
argument of the COPY^NS command in the STARt function as described in Sections 1.8 and 2.2.

7.2 BASIC BAND-PASS FILTER FUNCTIONS

The functions 'BPFILTER' and 'BPGAUSS" implement standard LC band-pass filters.

net^'LorC BPFILTER params — Synthesizes LC Band-Pass Filters
Uses 'proto' fn to synthesize Tchebysheff or Butterworth filters.
'LorC = 'i' or 'C, indicates end element type,
'params' is a five element vector:

params[1] = In-Band Ripple {dB) {Zero for Butterworth)
params\.2] = Wuxnher of Poles
params[3] = Center Frequency {Hz)
params[i] = Bandwidth {Hz) {Butterworth-^3 dB, Tchebysheff^Ripple)
params[5] = Generator Impedance

•net' = MARTHA network description with ZG and ZL specified
Prompts for input if 'LorC missing or invalid, or if pparams/5

net'-BPGAUSS NprFo{Hz),BW{Hz),Zo{Ohms) — Synthesizes Gaussian BP Filters
Performs a band-pass transformation on the results from 'LPGAUSS'.
Bandwidth is 3 dB. Prompts for parameters if any inputs are missing.
2<Npoles<ll

7.3 'fflGH SIDE C CAPACITIVELY COUPLED BAND-PASS FILTER FUNCTIONS

The main function in this group is 'HSCBPF\ which synthesizes a band-pass filter consisting of
resonators coupled with capacitors. This type of filter is suitable for narrow band designs where reduced

43

attenuation at high frequencies is not a problem. The function 'HSCBPFNET is used to convert the

output oiHSCBPF into a MARTHA network. Although easy and economical to build, the component

values and impedance of the resulting filter design can be awkward. The functions 'ENDCAP\

'LTRANS' and 'TEECIJ' can be used to modify the design to transform the impedance and correct for

component value problems.

Z*-HSCBPF params — Synthesizes a High-Side C Coupled Band-Pass Filter
Uses 'k' and 'g' values from 'kqvalues', with the resonator inductance
forced. Typically used for fractional BWs less than 10 percent, and
where finite high-frequency attenuation is acceptable,
'params' is a 5 element vector:

params[l] = In-Band Ripple {dB) (0-*Butterworth, l^>0)^Tchebycheff
~l-*Constant K, ~2^Gaussian)

params[2] = Number of Poles
params[3] = Center Frequency {Hz)
params[4] = Bandwidth {Hz) {Ripple for Tchebysheff, 3 dB for others)
params[5] = Resonator Inductance {Henries)

Prompts for input if parameters missing, or if number of params^^b
The output vector 'Z' is equal to the input vector 'params' with the
following items catenated:

2[6] = Load Resistance {Ohms)
Z[l 8] = 0, or L[l] S L[N] Resonator Inductors For Gaussian Filter
Z[9 to 11] = 0 {Reserved for use by 'TEECIJ' and 'ENDCAP')
Z[12 to nn)] = {Np) Resonator Capacitors {Farads)
Z[{nn+1) to mm] = (JVp-1) Coupling Capacitors {Farads)

When the resonator inductance is pre-determined, the filter impedance
is typically NOT 50 Ohms. The function ENDCAP can add a capacitive
impedance divider to the output of HSCBPF to correct this. If the
coupling capacitor values are too small, the function TEECIJ can be
used to increase their value at the cost of additional capacitors.
The function HSCBPFNET is used to convert the result of any of the
above functions into a MARTHA network description.
Notes: Constant K design produces minimum loss for a given stop-band.
Gaussian filters are inherently asymmetric, and only the inner L's
can be set equal to params[5]. The 1st & last inductor are set so
that the inner inductor{s) = geometric mean of L[l] & L[N].

net-Q HSCBPFNET X — Converts Output From 'HSCBPF' Into MARTHA Network
Creates a MARTHA network description of a high-side C-coupled band-pass
filter synthesized using 'HSCBPF'. 'X' is the output from 'HSCBPF',
with or without modifications from 'ENDCAP' or 'TEECIJ'. 'Q' is the
coil Q at Fo. 'O'=0 assumes infinite coil Q. If 'Q' is omitted, fn
prompts for input.

V^Ro ENDCAP X — Adds Capacitive Imp. Transformer To Output Of HSCBPF
Converts the input/output resonator capacitances from 'HSCBPF' to a
capacitive divider to transform the resonator impedance {Rp) down to a
desired input/output impedance {Ro). 'X' is the output from 'HSCBPF'
or 'TEECIJ'. The output vector 'V = 'X', but with:
V[6]=Ro,V[10]=-Ctop,V[ll]=Cbot,V[li to nn]=Cr' s,V[{nn+1) to mm]=Cij's.
NOTE: The capacitance of the matching network is subtracted from the
end resonator capacitances. If the impedance transform required is
too small, this can result in negative resonator capacitorsl If this
occurs, you can find the impedance transform where the Cr's=0. Then

44

transform the remaining amount using standard impedance scaling.

V^Cs TEECIJ X -- Modifies High-Side C Coupling to Capacitor 'Tee's
This can be used to raise the values of the coupling-network capacitors
in a high-side C coupled filter. 'X' is the output of either 'HSCBPF'
or 'ENDCAP'. 'Cs' is the desired shunt capacitance. If 'Cs' is
omitted, fn prompts for input. The output 'V is vector equal to 'X',
hut with V[9]=Cs, and modified Cr's, and Cij's

els^L' LTRANS L,C0,C1,C2 — Imp. Transform for Cap-Coupled Shunt Tanks
Performs transform in Geffe, 'Simplified Modern Filter Design', p34.
Fig 4-8. Typically used to Increase size of tank inductors.

Cl C2 ClH-W C2H-W
o_| I—o— I 1—0 0 — 0 I I—o— I 1 o —o

I III
1—0—1 1 I—o— 1 I

CO 1 c —\ Clxa 1 C3 I c Lx I 02x0
c L —I === === = N*2 ===

I = I
1—0—1 1

7 V

C I

-0—1 I

V V

a= (W-D-^W C3={C0-(W-1)MC1+C2))^W*2

L' = Desired value for (L'>^N*2)
els = (LxA7*2), (CIMW-D^W), (C1H-W),C3, (C2-rW),C2MN-l)-W

7.4 'fflGH SIDE L' INDUCTIVELY COUPLED BAND-PASS FILTER FUNCTIONS

High-Side-L filters are similar to the High-Side-C design, only the resonator sections are coupled
with inductors. This type of filter has poor attenuation at low frequencies, but rolls off more at higher
frequencies. In general, the response of inductively coupled filters will be more symmetrical than
capacitively coupled designs. The function 'HSLBPF' does a straight forward synthesis, where the
'HSLCBPF' function includes the effects of finite Q and parasitic capacitance of the coupling inductors.
Both functions return a MARTHA compatible network for further analysis.

net*-HSLBPF params — Synthesizes High-Side L Coupled Band-Pass Filters
Creates a MARTHA network description with ZG and ZL set to Rsource.
Computes coupling using K and Q values from 'kqvalues' fn.
'params' is a five element vector:

params[1] = In-Band Ripple (dB) {O^Butterworth, {>0)^Tchebycheff
~l-*Constant K, 2-^Gaussian)

params[2] = Number of Poles (>2)
params[3] = Center Frequency {Hz)
params[4] = Bandwidth {Hz) {Ripple for Tchebysheff, 3 dB for others)
params[5] = Load and Generator Resistance {Ohms)

Prompts for input if any parameters are missing. Typically useful for
10 percent fractional BW or less. See 'HSLCBPF' fn to account for
coupling inductor parasitics and finite Q.
Notes: Except for Gaussian designs, resonator inductors are identical.
Gaussian filters are inherently asymmetric, and only the inner L's
can be set equal. The 1st & last inductor are set so that the inner

45

inductor{s) = geometric mean of L[l] & L[N] .
Constant K design produces minimum loss for a given stop-band.

net^Q HSLCBPF params -- High-Side L BP Filter Synthesis w/Parasitics
Creates a MARTHA network for a high-side L coupled band-pass filter
with finite Q and coupling inductor parasitic capacitance included,
'params' is a 1 element vector:

params[l] = In-Band Ripple (dB) {0-*Butterworth, (>0)^Tchebycheff
'Inconstant K, 'l^Gaussian)

params[2] = Number of Poles
params[3] = Center Frequency (Hz)
params[A] = Bandwidth {Hz) (Ripple for Tchebysheff, 3 dB for others)
params[5] = Source Resistance (Ohms)
params[6] = Resonator (Shunt) Inductance (Henries)
paramsH] = Coupling Inductor Parasitic Capacitance (Farads)

Prompts for input if any parameters or Q are missing.
Function sets: ZG-^ZL^ZN^ZNIN^ZNOUT'-Rsource
'Q' is coil Q: 0=0 denotes infinite Q, function sets Q=1E12

Q>0 adds series R to coils, Q=2xPI^Fo>'Lo-^Rseries
Notes: This function synthesizes an LC ladder filter, and then adds
a series-L, shunt-C, series-C matching network. Because the
impedance transform is added to an existing network, it includes a
negative capacitor to cancel the shunt-C at the filter input. If
the impedance transformation required is too low, the matching
network may have negative elements, requiring a large value for L. -
Except for Gaussian designs, the resonator inductors are identical.
Gaussian filters are inherently asymmetric, and only the inner
inductors can be set to the specified value. The 1st & last inductor
are set so the desired value {params[6]) = geometric mean of L[l] & L[N].
Constant K design produces minimum loss for a given stop-band.

7.5 IMPEDANCE TRANSFORMING BAND-PASS FILTERS

The function 'BPXFMR' synthesizes a Tchebysheff band-pass filter with unequal input and output
impedances. This is frequently used more for its impedance matching characteristics than as a filter, but
it is often handy to be able to combine the two functions in one network. The function currently only does
second order filters, but there are references that could be used to expand its capabilities.

net-^BPXFMR params — Synthesizes a BP Filter Impedance Transformer
Synthesizes a Tchebyscheff bandpass-filter impedance transformer using
the background fn 'protog'. 'params' is a seven element vector:

params[1] = In-Band Ripple (dB) (0 Not Allowed)
params[2] = Number of Poles (Only N=2 Implemented)
params[3] = Center Frequency, Fo (Hz)
params[A] = Ripple Bandwidth, BW (Hz)
params[5] = Generator Resistance, ZG (Ohms)
params[6] = Load Resistance, ZL (Ohms)
params[l] = Option Selection (1 - 5)

Selectable Options Are:
1 = Inductive 'PI' Reactive Transformer
2 = Inductive 'TEE'
3 = Capacitive 'PI' '' ''
4 = Capacitive 'TEE' '' ''

46

5 = Maximum Transformer Turns Ratio

'net' is a MARTHA network description with ZG and ZL specified, ZG<ZL.
Prompts for inputs if any parameters are missing.

The synthesis procedure is: 1) design low-pass prototype, 2) bandpass
transform to a center freq. of (FCrBW), 3) insert the selected
reactance transformer, 4) frequency and impedance scale to the desired
center frequency and generator resistance.

References:
1. Geffe,Philip R.,'Simplified Modern Filter Design,' Hayden Book

Company,Inc.,New York, 1966 pp.33-35
2. Plotkin,S. AND Nahi,N.E., 'On Limitations of Broad-Band Impedance

Matching Without Transformers', IRE Transactions on
Circuit Theory, June 1962, pp.125-132

7.6 BAND-STOP FILTER FUNCTION

The ftinction 'BSFILTER" creates a MARTHA network description of a simple LC band-stop

filter. You can specify whether the end element of the filter is an inductor or a capacitor.

net-^'LorC BSFILTER params — Synthesizes LC Band-Stop Filters
Uses 'proto' fn to synthesize Tchebysheff or Butterworth filters.
'LorC = 'L' or 'C , Indicates end element type,
'params' is a five element vector:

params[1] = In-Band Ripple {dB) {Zero for Butterworth)
params[2] = Number of Poles
params[3] = Center Frequency {Hz)
params[A] = Bandwidth {Hz) {Butterworth-^3 dB, Tchebysheff^Ripple)
params[5] = Generator Impedance

'net' = MARTHA network description with ZG and ZL specified
Prompts for input if 'LorC missing or invalid, or if pparams/5

7.7 HIGH-PASS FILTER FUNCTION

'HPFILTER' creates a MARTHA network description of a simple LC high-pass filter. You can
specify whether the end element of the filter is an inductor or a capacitor.

net^'LorC HPFILTER params — Synthesizes LC High-Pass Filters
Uses 'proto' fn to synthesize Tchebysheff or Butterworth filters.
'LorC = 'L' or 'C , Indicates end element type,
'params' is a four element vector:

params[l] = In-Band Ripple {dB) {Zero for Butterworth)
params[2] = Number of Poles
params[3] = Cut-Off Freq {Hz) {Butterworth-^3 dB, Tchebysheff-*Ripple)
params['i] = Generator Impedance

•net' = MARTHA network description with ZG and ZL specified
Prompts for input if 'LorC missing or invalid, or if pparams^A

47

7.8 LOW-PASS FILTER FUNCTIONS

There are two functions for synthesizing low-pass filters, 'LPFILTER'' and 'LPGAUSS\
LPFILTER will do either Butterworth or Tchebysheff designs, and LPGAUSS is used for Gaussian
response filters. Both functions return a MARTHA network description.

net^'LorC LPFILTER params — Synthesizes LC Low-Pass Filters
Uses 'proto' fn to synthesize Tchebysheff or Butterworth filters.
'LorC = 'L' or 'C, Indicates end element type,
'params' is a four element vector:

params[1] = In-Band Ripple (dB) [Zero for Butterworth)
params[2] = Number of Poles
params[3] = Cut-Off Freq (Hz) (Butterworth^S dB, Tchebysheff^Ripple)
params[^] = Generator Impedance

'net' = MARTHA network description with ZG and ZL specified
Prompts for input if 'LorC missing or invalid, or if pparamsi^i

net*-LPGAUSS Np,Fc(Hz) ,Zo(Ohms) — Synthesizes Low-Pass Gaussian Filters
Uses 'Iphgauss' fn to synthesize LC ladder low-pass Gaussian filters,
'net' is a MARTHA network description. Prompts for parameters if
inputs missing or wrong number. 2<Npoles<10

7.9 RESONATOR MODELING FUNCTIONS

There are two functions in the LLFILTER workspace that create MARTHA network models of

crystal or SAW (Surface Acoustic Wave) resonators.

net-^CRYSTAL Fs, Rs,Q, Cease — Creates MARTHA Network Model of a Crystal

net^SANRESONATOR params — Creates a MARTHA Model of a SAN Resonator
'params' is a six element vector:

params[1] = Series Resonant Freq, Frs {Hz)
params[2] = Unloaded Q
params[3] = Series Resistance, Rs {Ohms)
params[i] = Output Capacitance, Co {Farads)
params[5] = Package Capacitance, Cp {Farads)
params[6] = Phase (+1=0 Deg,"1=180 Deg)

'net' = MARTHA network description of the following circuit:

Cp
 I I

I Ls Cs Rs I
j;^ „__o —nnn—||—AAA —»— <= OUT

I D c I

Co === DC- xfmr for === Co
I D c phase I
V V V V

Prompts for input if no. of params i= 6

48

7.10 NORMALIZED STOP-BAND FREQUENCY FUNCTIONS

The functions 'BOMEGAS' and 'COMEGAS' calculate the ratio of the stop-band frequency to the
pass-band frequency of either Buttenvorth or Tchebysheff filters. These are useful when you have
specific stop-band attenuation requirements, and are trying to determine what order of filter is required.

Fs'^BOMEGAS params -- Computes Normalized Butterworth Stopband Frequency
'params' is a 3 element vector:

params[1] = Number of poles
params[2] = Max Passband Atten (dS)
params[3] = Min Stopband Atten {dS)

'Fs' is the normalized Stopband edge
User is prompted for input if 'params' isn't 3 elements

Fs^COMEGAS params — Computes Normalized Tchebysheff Stopband Frequency
'params' is a 3 element vector:

params[1] - Number of poles
paramsll] = Ripple (dS)
params[3] = Min Stopband Atten {dS)

'Fs' is the normalized Stopband edge
User is prompted for input if 'params' isn't 3 elements

7.11 MISCELLANEOUS FILTER FUNCTIONS

There are three remaining fimctions in LLFILTER: 'ACTIVEFLT' for designing op-amp active

filters, 'DIPLEXER' for designing LC diplexers and TAPL' for designing tapped inductor impedance

transformation networks.

net-ACTIVEFLT params — Models a 2-Pole Low-Pass Active Filter
Uses MARTHA 'OPAMP' element to implement the filter on p 289 of
"Operational Amplifiers" by Tobey,Graeme,HueIsman.
'params'= Ho{Negative),Fo{Hz),a{1.A14 for Butterworth),C2{Farads)
Ho is the DC gain, and a is 2 times the damping coefficient.

net*-'LPorHP' DIPLEXER params — Synthesizes Lumped-Element Diplexers
'LPorHP' defines the response desired: 'LP' gives a network with the
High-Pass section terminated, 'HP' terminates the Low-Pass section,
'params' is a four element vector:

params[l] = Ripple {dB) , (0 dB is invalid)
params[2] = Number of poles {per section)
params[3] = Crossover frequency {Hz)
params[^] = Source and Load Resistance {Ohms)

'net' is a MARTHA network with ZG and ZL specified.
Prototype design is generated by background fn 'protl'
Fn prompts for inputs if response type or any of 'params' are missing

net*-TAPL params — Computes tapped inductors corrected for loaded Q
Computes the tapped-inductor required to perform a step-down impedance
transformation, including the effects of loading. 'net' is a MARTHA
network of LI and L2. 'params' = RL {Ohms) ,RP {Ohms) ,LP{nH) ,Fo {MHz)
Function prompts for inputs if any are missing.
NOTE: RP-^RL > 2

49

1
c

1
>

c > RP
c >

1
V

1
V

nnn—<= — —
Ll 1 1

c >
L2 c > RL

c >
1

V
1

V

7.12 BACKGROUND FUNCTIONS

In addition to the functions listed above, there are a number of background functions (with lower case
names) that are called by these functions, but are not typically executed directly by the user. If you need
to create a specialized filter synthesis routine, you may want to investigate these. Many filter designs
begin with the calculation of prototype 'g' values, or 'k' and 'q' values, and fiinctions already exist to
compute these. In addition, MARTHA includes a number of functions to do frequency and impedance
scaling of networks to further simplify the task.

Below are the EXPLAIN listings for the three more useful background functions in LLFILTER:

kq*-kqvalues Ripple{dB),Npoles — Background Fn for Filter Synthesis
This function determines normalized 'k' and 'g' values for four
filter types: 1) Butterworth (i?ippie=0), 2) Tchebysheff {Ripple>0),
3) Constant K {Ripple=~l), and 4) Gaussian {Ripple= 2), for any number
of poles. The generator impedance (ZG) is 1 Ohm, and the bandwidth
{ripple BN for Tchebysheff, 3 dB for others) is 1 Radian,
'kq' is an (Npoles+l) element vector:

kq^ql,kl2,k23,- - -,k{Npoles-1)Npoles,qNpoles
Note: Constant K (ql*-kl2-k23 - - gW-1) produces minimum loss for a
given stop-band.

net^'LorC proto Ripple{dB),Npoles — Background Fn for Filter Synthesis
Synthesizes a low-pass prototype Butterworth or Tchebysheff filter of
any number of poles. 'LorC'='L' or 'C, Indicates end element type.
If 'Ripple'=0, response is Butterworth, with the 3 dB BW = 1 Radian.
If 'Ripple'¥=0, response is Tchebysheff, with the ripple SW = 1 Radian.
'net' is a MARTHA network description with 'ZG'=1 Ohm, and 'ZL' set
to the required value depending on the filter specs.

elements^protog Ripple{dB),Npoles — Background fn for BPXFMR
Synthesizes standard doubly-terminated ladder-type Butterworth or
Tchebysheff low-pass filters of any number of poles. 'elements' is a
vector of normalized element values for a 1 Radian bandwidth and 1 Ohm
generator impedance. If Ripple=Q, filter is Butterworth and BN is
3 dB. For Ripplei^O, filter is Tchebysheff, and ripple BW is used.
Refer to Matthaei,Young,Jones 'Microwave Filters etc.', p. 95 for
circuit topology. 'elements' is equivalent to gl, g2, g3, etc.

7.13 ACKNOWLEDGMENTS

Most of the fiinctions in LLFILTER were originally developed by Dave Hodsdon.

50

8. LLPHaSS WORKSPACE

hIRRTHA COMPATIBLE PHASE DISTORTION ANALYSIS

8.1 INTRODUCTION
One concern when developing filters for RF systems is phase distortion. This may be described as

group-delay variations or deviation from linear phase. While working on some filters for a receiver
design, several APL functions were written to both analyze the phase distortion of the filters and
synthesize all-pass compensating networks to correct for the most common type of distortion. To
illustrate the use of these functions, an elliptic band-pass filter centered at 110 MHz will be used. The
response of the filter is shown in Figure 8.1.

TRANSMISSION AND REFLECTION RESPONSE OF 'ELBPNET'

CIRCUIT ANALYSIS BY MARTHA. 73'H
O .-,-v-i"i-T-r-v-i-i--f'-v-<"i--f-t-i-<._i Lfl 1 1 1 I 1 1 1

14:04 08/24/96
T-jT'-r-r-rv-f-i-v-pv-r-i--f-r-v-r-i"f-_

-60 _L
6.000E7 8.000E7 1.OOOE8 1.200E8

FREQUENCY < HZ)

_L J
1.400E8 1.600E8

Figure 8.1. Frequency response of 3rd order elliptic filter

The functions in this workspace are designed to work with MARTHA. Loading LLPHASE
automatically copies the LLMARTHA workspace, which is assumed to be in Library 8. If you are using a
different library for the LLAMA workspaces, you with need to edit the argument of the COPYtWS
command in the STARt function as described in Sections 1.8 and 2.2.

8.2 GROUP DELAY ANALYSIS FUNCTIONS

One problem with elliptic filters is that they exhibit the most phase and group delay distortion of
any of the standard filter types. A typical task would be to calculate the group-delay of such a filter.
There is a group-delay function, AGD, distributed with MARTHA in the MARTHAD workspace that
calculates the approximate group-delay of a network. Figure 8.2 shows the group-delay of the filter
calculated using AGD.

51

GROUP DELAY OF ■ELBPNET' USING 'fiGD' FUNCTION

-1. OOE -7

-2.OOE-7

-3. OOE-7

CIRCUIT ftNflLYSIS BY MARTHft. 73»H 14 :10 08/ 24/96
1 < 1 1 1 1 < < ' 1 < < < M < • < > 1 < < < 1 j 1 1 1 1 1 1 1 1 1 < ... 1 1 ' ' ' ' .

. .
/~-

: y : ^
■ ^

-
■

- -
■

■

.

■ . .

■

.
'

- -
:

-. . , , 1 , , , , 1 , , , . 1 , , . , 1 , , , .,....!.... , , , . 1 . . , . 1'
6.000E7 8.000E7 1.000E8 1.200E8

FREQUENCY < HZ)

1.400E8 1.600E8

Figure 8.2. Group-Delay using AGD function

Unfortunately, the plot is dominated by the 'glitches' produced by the zeroes of the elliptic filter.
This is 'accurate', in the sense that the group-delay isn't really well defined at these points, but it produces
a result that is difficult to work with. There is another fiinction, called GD, that was written to deal with
group delay plots in a somewhat cleaner fashion. The result of running the EXPLAIN fiinction on GD is

listed below:

EXPLAIN '6D'
Ovt-^D Net — Computes Approx Group Delay of a MARTHA Network
Computes (ATheta/AF) H-~2xpi for a 0.1% AF if F is 1 point. A AF of
0.Ix{F[i]-F[i-1]) is used as a starting point if F is a vector.
AF is reduced until tTheta < 0.175 Rad (10 Deg) . The transfer
parameter used is S21, and 'Out' is a MARTHA FOF. Fn is loosely-
based on an old Mainframe fn, but has been extensively cleaned up
and enhanced for speed. NOTE: The algorithm 'searches' for smooth
phase, and will 'avoid' singularities (i.e. from zeroes of ellip.
filters). Results are more usable than a rigorous answer with the
spikes such singularities produce.

Figure 8.3 shows the group-delay response of the same elliptic filter computed using GD. As long

as you are aware that the singularities are still there, the results from GD are scaled in a manner that

allows much easier study of the critical regions of the plot. Because it is so poor, the group-delay of

elliptic filters isn't treated much in the literature, so it isn't clear how such singularities are typically

handled.

52

GROUP DELfiY OF 'ELBPNET' USING 'SD' FUNCTION

CIRCUIT flNflLYSIS BY MflRTHfl. 73-H 14:12 08/24/96

3.00E"S :_.

2.00E-8 :_.

l.OOE-8 -.

OE7 8.000E7 1. OOOE8 1.200E8 1.400E8

FREQUENCY < HZ>

Figure 8.3. Group-Delay response using GDJunction

8.3 PHASE NON-LINEARITY FUNCTIONS

A common response used for this is the 'deviation from linear phase'. This is merely the phase of a
circuit with a constant delay term subtracted out. The function PHASNL was written to calculate this,
and the EXPLAIN listing for this is shown below:

EXPLAIN 'PHASNL'
Out^Fo(Hz) PHASNL Net — Computes Deviation From Linear Phase
Computes the phase of MARTHA network, with the linear phase at
Fo subtracted out. A AF of 0.1"(F[i]-F[i-1]) is used as a
starting point to determine the phase slope at Fo. AF is reduced
until ATheta < 10 Deg. Uses the fn PHUNWRAP to obtain the
unwrapped phase of S21 of the network. 'Out' is a MARTHA FOF.

As mentioned above, PHASNL uses a function called PHUNWRAP. This is a useful function for a

variety of applications. The EXPLAIN listing for PHUNWRAP is:

EXPLAIN 'PHUNWRAP'
Angl*-PHUNWRAP Net — Unwraps The Phase of S21 of a MARTHA network
The phase unwrapping is done by rotating the phase vector 1 point,
and then subtracting. If any point of the result is > 0, a wrap
must have occurred, and -360 Degrees is added to all subsequent
points. Result is a MARTHA FOF.

Figure 8.4 shows the unwrapped phase of the filter from PHUNWRAP, and Figure 8.5 shows the
phase distortion analyzed using PHASNL. Note that the singularities introduce 180° phase jumps, which
are not removed by the unwrapping process.

53

UNURflPPED PHASE OF 'ELBPNET'

CIRCUIT ANflLYSIS BY MORTHA. 73-H 14:15 08/24/95
200

•.... 1. _ . i I . . i I i I ^r~~t~. . . I . . r^
6.000E7 8.000E7 1.000E8 1.2O0E8 1.400E8 1.600E8

FREQUENCY < HZ>

Figure 8.4. Unwrapped phase of elliptic filter

DEUIATION FROM LINEAR PHASE OF 'ELBPNET'

CIRCUIT ANALYSIS BY MARTHA. 73»H 14:18 08/24/96

; ■ I : I i ■

1.000E8 1.200E8

FREQUENCY < HZ>

Figure 8.5. Deviation fi-om linear phase of elliptic filter

8.4 PHASE COMPENSATION WITH AN ALL-PASS NETWORK

Over a ±10 MHz bandwidth, the phase deviation is ~<fc30°. This is more than enough to introduce
significant distortion in some communications systems. In order to reduce this, a phase compensator can

54

be added. A second-order all-pass circuit can be used, which the function ALLPASS synthesizes. The

EXPLAIN listing is shown below:

EXPLAIN 'ALLPASS'
net^Zo ALLPASS Fo(Hz),Q — Creates A 2nd Order All-Pass Network
Creates a MARTHA network description of the following circuit:

La
I nnnnn I

I

Zo

Ca
-I I-

Ca
-I 1-

I
=== Cb

I
Z)

=> Lb
3

I

Note: Q must be > 1

*- Zo

Circuit can be used to provide Group Delay equalization for filters.
REF: Williams, A.B., Taylor, F.J., 'Electronic Filter Design
Handbook' McGraw Hill, 1988, pp 7-4 to 7-6

The resuh of adding an all-pass network to the filter is shown in Figure 8.6. After a few cut-and-try
experiments, the best performance was achieved with a Q of 5. The phase ripple is now ~<t6° (note the

change in vertical scale).

DEWIftTION FROM LINEAR PHASE OF 'ELBPNET'
UITH fll-LPflSS PAHSE COMPENSATOR <a"5>

CIRCUIT ANALYSIS BY MARTHA. 73-H
ZOO,—, , r-

14:21 08/24/96

Figure 8.6. Elliptic filter with all-pass phase compensator

55

8.5 ACKNOWLEDGEMENTS

All of the functions in the LLPHASE workspace are the efforts of the author.

56

9. LiMIXBR WORKSPACE

MIXER SPUR ANALYSIS

9.1 INTRODUCTION

One of the more demanding tasks in designing RF systems is coming up with a 'clean' frequency
plan. This requires selecting RF, IF and LO frequencies so that unwanted mixer products do not get
folded back into a signal band somewhere. The LLMIXER workspace contains functions to provide a
graphical analysis of mixer products and spurs to aid in this process. LLMIXER has been documented to
work with the EXPLAIN and SUMMARY functions, and follows the various programming conventions

of other LLAMA workspaces.

There are two main functions in the LLMIXER workspace: MIXSPUR, and SKIPSPUR.
MIXSPUR calculates and plots mixer spurs given a Local Oscillator frequency, the RF and IF bands, and
the maximum order to check. It will also optionally highlight an RF/IF sub-band. SKIPSPUR is
identical to MIXSPUR, except that it allows omitting specific spurs from the plot.

Both functions will prompt for inputs if called with an empty vector (' ') as a right argument. All
frequencies are specified in MHz. SKIPSPUR can be used to sort out particularly busy spur plots, if
some spur labels get overwritten by other spurs. If the frequency plan and bands are specified in 'round'
numbers, some spurs may just 'nick' the comer of the plot. These spurs are labeled with a single letter at
the appropriate comer. Once a plot is on the screen, typing <shift>P will exit and produce a hardcopy.
Pressing any other key will exit without printing.

Here is a copy of the EXPLAIN resuh for MIXSPUR:

EXPLAIN 'MIXSPUR'

[Band] MIXSPUR params -- Plots Mixer Spurs For Given LO,RF,IF and Max Order
'params' is a six element vector {all Frequencies in MHz):

params[1] = Local Oscillator Frequency
params[2] = Lower End of RF Band
params[3] = Upper End of RF Band
params[4] = Lower End of IF Band
params[5] = Upper End of IF Band
params[6] = Maximum Order {M+N) To Be Checked

Function prompts for input if any parameters are missing.
'Band' is an optional frequency range {Lower Limit, Upper Limit) which
when -combined with the LO, defines a box on the plot. The frequency
band is assigned depending on whether it is a subset of the IF or
RF band. Function prompts for 'Band' only if it has prompted for
'params'. 'Shift-P' dumps screen to printer.

SKIPSPUR is identical except for the extra parameters to indicate which spurs to skip:

57

EXPLAIN 'SKIPSPUR'

[Band] SKIPSPUR params — Similar To MIXSPUR, But Can Omit Specified Spurs
'params' is an eight or more element vector {all Frequencies in MHz):

params [1] = Local Oscillator Frequency-
par ams [2] = Lower End of RF Band
params[3] = Upper End of RF Band
params[4] = Lower End of IF Band
params[5] = Upper End of IF Band
params[6] = Maximum Order (M+N) To Be Checked
params[1] = Order of LO for 1st spur to skip (0 to see all spurs)
params[8] = Order of RF for 1st spur to skip (0 to see all spurs)

params[l+2J] = Order of LO for Jth spur to skip
params[8+2J] = Order of RF for Jth spur to skip

Function prompts for input if any parameters are missing. The order
of spurs to skip must be entered in pairs. 'Band' is an optional
frequency range (Lower Limit, Upper Limit) which when combined with
the LO, defines a box on the plot. The frequency band is assigned
depending on whether it is a subset of the IF or RF band. SKIPSPUR
prompts for 'Band' only if it has prompted for 'params'. 'Shift-P'
dumps screen to printer.

Below is a sample plot showing the highlighted sub-band, and the legend indicating that one spur

has been skipped:

IN-BflND MIXER SPURS (MxRF + NxLO>, UP TO ORDER <M+N>=9
LO FREQ = 200MHZ

B>

C>

ORDER
M N
1 -1

2 -2

4 -4

OMITTED
M N
3 -3

RF BftND IN MHZ

Figure 9.1. Example spur plot

58

The plotting functions used in this workspace are based on an old version of the 'DC graphics.
These functions ARE NOT compatible with the newer UG plotting workspaces, so this should be kept
separate. The default display device is set for VGA. If you have an EGA display, you must edit the
'iniV function (lines 4 and 5). The printer is currently set to be an HP LaserJet. If you have an Epson
LQ type printer, edit lines 45 and 46 of the 'plotspur' function. If you are running the program
under a Windows operating system, you can always capture the results by copying the screen to the

clipboard using Alt-PrintScreen.

9.2 'RUN TIME' VERSION OF APL+PC MIXER SPUR PLOTTING SOFTWARE

One of the unique features of APL2000's APL+PC is that you can create stand-alone 'run-time'
programs. These are slightly modified workspaces that have been processed with a 'run time interpreter'
to create a DOS executable program. This allows users without an APL interpreter to run programs
written in APL. The process is best suited to well defmed-single purpose workspaces like LLMIXER.
If the APL workspace is modified to work with standard ASCII characters (converting the APL high
minus ' ~ ' to a regular ' -', for example), the user need never know about APL, the keyboard, character
set etc. The resulting program can be now run on any IBM PC in either DOS or Windows. Although
programs run a bit slower when executed in this manner, they are perfectly functional.

Starting from the LLMIXER workspace, the program MIXSPUR.EXE was created using this
system, and is included with the LLAMA files. In order to have one program rather than two, it is based
on the SKI PS PUR function, with an option of displaying all spurs. The program is 'hardwired' for a
VGA display, and an HP LaserJet compatible printer. A sample session is show below, using the same
input parameters that generated the plot in Figure 9.1. If you look closely, you will see that the spur to be
skipped (3 -3) was designated using the standard minus sign.

Lincoln Laboratory Advanced MARTHA Applications (LLAMA): MIXSPUR Program
Copyright 1996 by the Massachusetts Institute of Technology

MIXSPUR calculates and plots mixer spurs given a Local Oscillator frequency,
the RF and IF bands, and the maximum order to check. It will also optionally
hi-lite an RF/IF sub-band. The program can omit specific spurs from a plot if
things get too cluttered. The program will produce a screen plot on a standard
VGA display, and can print a hardcopy on any HP LaserJet compatible printer.

The 'Sub-Band' is an optional frequency range {Lower Limit, Upper Limit)
which when combined with the LO, defines a box on the plot. The frequency
band is assigned depending on whether it is a subset of the IF or RF band.

The spur-skipping feature can be used to sort out particularly busy spur
plots, if some spur labels get overwritten by other spurs. If the frequency
plan and bands are specified in 'round' numbers, some spurs may just 'nick'
the corner of the plot. These spurs are labeled with a single letter at the
appropriate corner. Once a plot is displayed, typing <shift>P will produce
a hardcopy. Pressing any other key will return from the plot without printing.
The program will then ask if you wish to exit or run another analysis.

59

************************* MIXSPUR **********************************

LO, RF{low), RF(high), IF{low), IF{high), Maximum Order {Freqs In MHz):
200 205 225 5 25 9

Order of spurs to skip in M,N pairs {MxRF,NxLO), 0 0 shows all spurs:
3 -3

RF or IF Sub-Band to be hi-lited {in MHz), or <ENTER> for none:
10 20

At this point, the program draws the plot and pauses. When you leave the plot, the program asks:

Do You Want Another Plot? (Y/N): n

9.3 ACKNOWLEDGMENTS

This was loosely based on an old mainframe program by Dave Hodsdon, but with considerable
enhancements. Bob Actis provided the motivation for creating the run-time version.

60

10. LLrJMB WORKSPACE

MARTHA COMPATIBLE TIME DOMAIN ANALYSIS

10.1 INTRODUCTION

One of the APL workspaces that has been used for a number of systems is the LLTIME
workspace. This contains functions to perform time domain analysis on linear circuits. LLTIME uses
the APL FFT and IFFT functions developed by Prof. Paul Penfield Jr. at MIT. All of the functions
have been heavily commented, and have been set up to work with the SUMMARY and EXPLAIN
functions. They are also designed to be compatible with the LLMARTHA plotting routines, and the
network analysis functions automatically produce X and Y labels for plotting using the MARTHA 'hd'

header variable.

Because this workspace is primarily intended to be used with MARTHA, loading LLTIME
automatically copies the LLMARTHA workspace, which is assumed to be in Library 8. If you are using a
different library for the LLAMA workspaces, you will need to edit the argument of the COPYmS
command in the STARt function as described in Sections 1.8 and 2.2.

10.2 TIME DOMAIN ANALYSIS FUNCTIONS

The two most useful functions are 'AMPLVST and 'IFAMPVST, which calculate the time
response of a MARTHA network to the waveform shown in Figure 10.1. AMPLVST operates at baseband
using the circuit in Figure 10.2, and IFAMPVST converts the response around some IF down to
baseband using the circuit in Figure 10.3. There is also an 'IMPULSE' function, which computes the
impulse response of a network.

Es(t)

DCj+A2Sin(2nfjt+eJ DC,+A, sin(2nfit+e,)

Figure 10.1. Input waveform for time-response functions

ZG
I VW-o—

Es(t) @

2-PORT
NETWORK

ZG
I VW-o—

Es(t) 0
2-PORT

NETWORK
ZL

Figure 10.2. System analyzed by AMPLVST Figure 10.3. System analyzed by IFAMPLVST

61

Mat-Net AMPLVST params — Computes Complex Time Response of a MARTHA Network
The input waveform consists of a sequence of two sine waves, each of
arbitrary amplitude, frequency, phase, DC offset, and duration. Mat has
4 columns; Real, Imaginary, Input, and Time.

Mat-Net IFAMPVST params — Computes Time Resp. of a MARTHA Network at an IF
Similar to AMPLVST, only the response is calculated about some IF, and then
converted to baseband. Mat has 4 columns; Real, Imaginary, Input, and Time.

Mat-Net IMPULSE Npts,T — Computes Complex Impulse Resp of a MARTHA Network
Mat has 3 columns; Real, Imaginary, and Time.

The parameter list for the right argument of AMPLVST and IFAMPVST is pretty involved, and
both functions will prompt the user if called with an empty vector. There are several examples
demonstrating the use of these functions and the input parameters later in the section. The left argument
'Net' is a character vector description of a MARTHA network, and the result 'Mat' is a multi-column
matrix with time as the last column. This allows the results to be plotted easily without re-formatting.
The last result calculated by any of the 3 main time response functions is stored in the global variable

TAME' for later use.

10.3 OUTPUT MODIFIER FUNCTIONS

There are five additional functions that work with the network response functions and the
'SPECTRUM function (described below). These allow you to extract various types of information from
the output of the analysis functions, i.e. the envelope of a response, the real or imaginary part, etc.

dBV-DBV A — Converts Output From Time Response Functions To dBV
Output is 2 columns; dBV, and Time.

Env-ENV A — Calculates the Envelope of Complex Time Response Signals
Output is 2 columns; Envelope, and Time. NOTE: Doesn't work on SPECTRUM

Real-REAL A — Picks Off Real Part of Complex Time Response Signals
Output is 2 columns; Real Part, and Time.

Imag-IMAGINARY A — Extracts Imaginary Part of Output Time Response Fns
Output is 2 columns; Imaginary Part, and Time.

MagV-MAGV Signal — Converts Complex Time Response To Magnitude w/Sign
Calculates the magnitude of the signal, but restores the sign so that
a bipolar waveform results. Output is 2 columns; 'Magnitude', and Time.

10.4 TIME RESPONSE EXAMPLES

The first example shows the response of a low-pass filter to a rectangular pulse (the input
frequencies are zero, and the pulse is created by setting the phase of one signal to 90 degrees). The

network is:

62

LPNET

(C 4.5£~9) WC WS L 11.25K~6

Figure 10.4 was created using an empty argument to get prompts from AMPLY ST:

PLOT REAL LPNET AMPLVST ''
1st Signal Params ri(secs) ,A1 (volts) ,-&! (degs) ,F1 (Hz) , <DC1 (VoJts) >:

0.5£"6 2 90 0
2nd Signal Params r2 (sees) ,A2 (volts) ,-&2 (degs) ,F2 (ifz) , <DC2 (Volts) >:

1.5£~6 0 0 0
Enter Number of Points (Pwr of 2): 256

PLOT REftL LPNET fiMPLVST O. SE'e 2 90 O 1. SE'S O O O 256

CIRCUIT SNflLYSIS BY MflRTHft. 73-H
1-0| I I , I I . I . . K , . I . I

12:37 12/11/96

Figure 10.4. Time response of a square pulse through a low-pass filter

The next example analyzes the response of a 25 MHz bandpass filter:

BPNET
((C 2.25E-9)P(I. 1.801£-8)S R 0.01)WC Pi7S (L 5.627E-6)S(C 7. 2£ 12) S R 0.01

Figure 10.5 was created by:

PLOT REAL BPNET AMPLVST ''
1st Signal Params ri (sees) ,A1 (volts) ,■&! (degs) ,F1 (Hz) , <DC1 (Volts) >:

0.5£"6 2 0 25Ee
2nd Signal Params r2(sees),A2(volts),42(degs),F2(Hz),<DC2(Volts)>:

1.5F"6 0 0 25F6
Enter Number of Points {Pwr of 2): 256

63

PLOT REAL BPNET flMPLlJST CSE'S 2 O 25E6 l.SE-fi O O 2SE6 2SS

„ CIRCUIT ftNBLYSIS BY MfiPTHfl. 73-H 12:40 12/11/96

TIME <SEC>

Figure 10.5. Time response of a tone burst through a band-pass filter

The next example was created using the data from the previous analysis, which is stored in the
global background variable TAME, by running:

PLOT ENV TAME

PLOT ENV BPNET flMPLVST O.SE-6 2 O 2SE6 1.5E"6 O O 25ES 25S

CIRCUIT ftNflLYSIS BY MfiRTHfl. 73-H 12:41 12/11/96

o.e 1. / \ -j

0.6 :. / \ -^

0.4:_ / \ -|

0.2 -I \ -_

TIME <SEC>

Figure 10.6. Envelope of a tone burst through a band-pass filter

64

10.5 FREQUENCY SPECTRUM FUNCTION

The function 'SPECTRUM' computes the spectrum of a time waveform using the FFT function.
The last result of running SPECTRUM is stored in the variable 'FAME' for later use.

Maf-SPECTRUM V(t) -- Computes Spectrum of a Time Waveform Using FFT
V(t) is a 3 column matrix of Real, Imaginary, Time. The Imaginary column
is optional for pure real signals. Mat has 3 columns; Real, Imaginary,
and Frequency.

10.6 FOURIER SERIES FUNCTIONS

There are two functions, 'FOCO' and 'FOSER', for calculating and reconstructing Fourier Series
representations of periodic waveforms. FOCO computes the Fourier coefficients of a periodic waveform,
and FOSER reconstructs a time waveform from a set of Fourier coefficients.

Cmat^Nc FOCO Data — Computes Fourier Series Coeffs of Periodic Waveforms
Produces a table of 'Wc' Fourier Series coefficients in Magnitude/Angle
format from a vector of one period of a time waveform.

Mat^Npts FOSER Coeffs — Reconstructs Waveform From Fourier Series Coeffs
Checks the results of the FOCO function. Can be used with PLOT as follows:

PLOT FOCOdata AND (pFOCODATA) FOSER Ncoeff FOCO FOCOdata

Figure 10.7 shows the Fourier Series reconstruction of a square wave from the 1st eleven
harmonics using the FOCO and FOSER functions. The command string and data array are described in

the plot title.

PLOT TESTFOCO OND (pTESTFOCO) FOSER 11 FOCO TESTFOCO
TESTFOCOvO ,<99<»1),0,<99<5"1>

12:31 lZ/11/96

 I

•1.5h . . . I I ...■...■. I I I
0.2 0.4 O. 6 0.8

Figure 10.7. Fourier series decomposition of a square wave up to 11^" harmonic

65

10.7 FAST FOURIER TRANSFORM (FFT) FUNCTIONS

Although typically not called by the user (thanks to the response functions mentioned above) the

EXPLAIN listings for the two FFT functions at the heart of this workspace are given below:

Z-FFT X -- APL-Style Fast Fourier Transform
'X' can be real (an N element vector) or complex (2 row x N column
matrix). Result is always a 2 row complex matrix. N must be an
integral power of 2. A global weight matrix 'wt' is created each
time N changes, but 'wt' is re-used for subsequent transforms of the
same length. Function is optimized for speed.
Ref: Paul Penfield Jr., "EFFICIENT APL FAST FOURIER TRANSFORM",
LL Tech. Memo. No. 63i-0019, 5/16/80

Z-^IFFT X — APL-Style Inverse Fast Fourier Transform
'X' can be real {an N element vector) or complex (2 row x N column
matrix). Result is always a 2 row complex matrix. N must be an
integral power of 2. A global weight matrix 'wt' is created each
time N changes, but 'wt' is re-used for subsequent transforms of the
same length. Function is optimized for speed.
Ref: Paul Penfield Jr., "EFFICIENT APL FAST FOURIER TRANSFORM",
LL Tech. Memo. No. 63L-0019, 5/16/80

10.8 ACKNOWLEDGMENTS

In addition to the FFT functions by Prof. Penfield, the majority of the network time analysis
functions were originally developed by Dave Hodsdon. Mark Stevens suggested adding DC offsets to
AMPLVST, and a short-cut to reduce some of the network computations.

66

11. JMaRTHAD WORKSPACE

MRRTHA 'DEVELOPMENT' WORKSPACE

11.1 INTRODUCTION

The 'MARTHAD' (the 'D' stands for Development) workspace contains a number of functions that
are not as well tested or documented as the regular MARTHA functions. Some have been in regular use
for some time, and some of them may be a bit buggy. If you find something in here you desperately need
and either have trouble understanding how to use it, or encounter problems when running it, contact your
software vendor. Because these functions were written not long after the original release of the MARTHA
Addendum, they weren't designed to work with the EXPLAIN documentation system. Instead, each
function has a 'HOW variable that describes its usage.

11.2 NODAL WIRING FUNCTIONS

The fiinctions 'WA' and 'WF', along with the background fiinction 'RDE', allow 'floating' networks
to be connected into MARTHA circuits. A floating network is a network that can't be described as a
connection of 2-ports, and must be described in a nodal-connection form. These functions are at the core
of the combline filter synthesis workspace 'LLCOMBFV described in Section 6. The variable
'HOWNODAL' contains a complete description.

VARIABLE •HOWNODAL' IN MARTHAD WORKSPACE

NODAL WIRING FUNCTIONS: The functions 'WA' and 'WF' along with the
background function 'RDE', allow 'floating' networks to be connected
into MARTHA circuits. A floating network is a network that can't be
described as a connection of 2-ports, and must be described in a
nodal-connect ion form.

For example, suppose you wish to create the following circuit:

24
I II I

1 1
[1] I 20 [5] 1 50 I [2]
0--0 — nnnn--o—ww—o--nnnn--o—o - - - -

I ["3]
=== 4 to other MARTHA 2-ports

I
o o

[0]

Node Numbering Conventions: Node [1] must be the input
Node [2] must be the output
Node [0] must be ground
Nodes can have negative node numbers

'WF' is used to 'float' a network. The syntax is:

X *- nn WF net

67

where 'net' is a standard MARTHA network, and 'nn' is a node number
you assign according to the following conventions:

One-Port: nn[2] o

nn[l]
I
o

3 Terminal: I
nn[2] O-l

I
-o nn[3]

nn[l'.

Two-Port:
-O nn[3]

-o nn[4]

'WA' is used to connect 'floated' networks, for example:

Wl -^ 1 5 WF L 20 ties the 20 H inductor between nodes [1] and [5]
N2 -^ 5 ~3 WF R 1 ties the 1 Ohm resistor between nodes,[5] and

[~3]
N3 *- Wl WA N2 connects the two elements together

The entire nodal circuit description of the example above is:

NET ^ N3 WA {5 0 WF C 4) WA {'3 2 WF L 50) WA 1 2 WF C 24

This can now be incorporated in a regular MARTHA network:

NEWNET ^ NET WC {WP R 50) WC WS C 10

Once NET is incorporated into a standard MARTHA 2-port connection the
internal nodes are no longer available for use with the nodal wiring
functions. The maximum number of 'elements' in one nodal description
is limited by:

155 < {No. of 1-ports) + 4 x (No. of 2-ports)

IIJ STRIPLINE MODEL

'STRIPLINE' is a MARTHA circuit element model for stripline transmission lines. The
STRIPLINE element is used the same way as TEW in a MARTHA network, and if length is omitted
from the argument vector, the function will return the characteristic impedance of the line. The details
are outlined in the 'HOW ST RIP LINE' variable.

68

VARIABLE 'HOWSTRIPLINE- IN MARTHAD WORKSPACE

'STRIPLINE' is a MARTHA circuit element model for stripline transmission
lines. The function is monadic, and requires 5 arguments in the
following order: W-strip width, B-ground plane spacing, T-strip thickness,
L-length, and E-relative dielectric constant. All physical dimensions are
in meters. Example:

Tl *- STRIPLINE W B T L FORDIEL E

The 'STRIPLINE' element is used the same way as 'TEM' in a MARTHA network.
If you wish to know the impedance of a section of stripline,

STRIPLINE W B T FORDIEL E

will return the characteristic impedance of the line.

11.4 DATA REDUCTION TWO-PORTS
The functions "SDRT\ 'YDRT', and 'ZDRT" are used to compute Data-Reduction Two-Ports from

measurement data. This is a method of calculating an equivalent de-embedding circuit from measured
data. The variable 'HOWDRT' contains details on how this is done.

VARIABLE 'HOWDRT' IN 'MARTHAD' WORKSPACE

Interpretation of arguments of SORT, YDRT, AND ZDRT:

Whenever a measurement of 1-Port Impedance Admittance, or Reflection
Coefficient is made, the point at which the measurement is made, and the
location of the device are different. Call the 'effective embedding net-
work' between the two 'EEN', and denote the device 'DEV' and the measure-
ment {i.e., the device as referred to the measurement plane) 'MEAS'.
Thus MEAS^EEN WT DEV.

The problem is to infer the device characteristics from the
measurements, i.e. to find 'DEV' form 'MEAS'. Normally, 'EEN' is not
known a priori. Note that unless the device is isolated from the
measurement plane, the relation between device impedance and measured
impedance is a complex, frequency-dependent bilinear transformation.
Therefore its inverse exists, and we may define a 'Data-Reduction
Two-Port' 'DRT' with the property that DEV=DRT WT MEAS. In fact,
many such two-ports exist, and we need only find one.

Step 1: To find one such DRT, find at least three device cali-
brations with known impedances 'ZC . These might include short circuit,
open circuit, standard capacitances, or diodes with known biases. Sub-
stitute these, one at a time, for the device, and measure the corres-
ponding impedances at the measurement plane 'ZMC . Arrange the calib-
ration impedances and the corresponding measured impedances in the form
of a FOE with A^N columns, where 'N' is the number of calibration
impedances used (at least 3). The columns should be arranged in the
form of 'n' blocks of four adjacent columns. Each block contains the
calibration impedance [real and imaginary parts) in the first two
columns and the measured impedance in the last two. That is, the form

69

is: RE ZC, IM ZC, RE ZMC, IM ZMC. Since there must be at least three
such blocks, the entire FOF must have at least 12 columns. It may
have 12, 16, 20, 24, etc. columns.

Step 2: The function 'ZDRT' in the workspace '100 MARTHAS' is used
to create the 'DRT' form this FOF: DRT^-ZDRT A. The result will be a
numerically defined two-port element. It will be reciprocal {regardless
of whether 'EEN' is or not) and have an arbitrary sign for Z12.

Step 3: This DRT is now used to process subsequent measurements.
Thus if 'MEAS' is now a numerically defined 1-Port element, for example
created by the function 'ZFOF', then the device is DRT WT MEAS; to
display its impedance and admittance, for example,

PRINT Z, Y OF DRT WT MEAS.

If admittance measurements are made instead of impedance, use the
function 'YDRT' instead of 'ZDRT'. If the measurements are reflection
coefficient instead of impedance, use the function 'SDRT' instead of
'ZDRT'. The result in all cases is a numerically defined 2-Port element,
a Data-Reduction Two-Port.

If more than three sets of calibration measurements are used
then the effects of experimental error are reduced somewhat.

The relation between 'DRT' and 'EEN' is not a simple one. There
are many possible Data-Reduction Two-Ports, and one of them is
~1 ZSCALE WN EEN which may be used in case 'EEN' is known. However,
that network is not generally equal to 'DRT'. In the first place, it
is non-reciprocal if 'EEN' is, and even if it is reciprocal, it may
differ from 'DRT' in the sign of Z12, which for 'DRT' is chosen at
random. Despite these differences, the Data-Reduction technique is
accurate. Although it is tempting to conclude that some properties of
'EEN' may be inferred from 'DRT', or even that EEN=~1 ZSCALE WN DRT,
this is dangerous. The only legitimate use of 'DRT' is for inferring
'DEV' from 'MEAS'.

11.5 APPROXIMATE GROUP-DELAY

The function 'AGD' is a response function that computes an approximation to the group-delay of a

MARTHA network. There are related functions, 'ADF' and "ADW, which compute the approximate
derivative with respect to F, or W {2n¥) respectively, and similar functions for FOFs. Details on these

functions, are contained in the variable 'HOWAGD'.

VARIABLE 'HOWAGO' IN MARTHAD WORKSPACE

The function 'AGD' is a MARTHA response function which computes the
approximate group delay of a network. The user must select a sufficient
number of closely spaced frequency points to ensure a meaningful answer.
NOTE: This function does not include phase un-wrapping, so there will be
discontinuities if the phase of the network passes through multiples of
360 degrees.

70

The functions 'ADF' and 'ADW are approximate derivatives with respect to
frequency, and u (2 pi^'F) . These have the same limitations and
requirements as 'AGD'.

The functions 'FAGD', 'FADF' and 'FADW perform similar operations on
FOF's.

11.6 RATIONAL FUNCTION OF S

The functions 'RAT, 'RATNE' and 'NEWELEMENT' are used to analyze and work with rational
functions of S' (jcS). RAT fits a rational function to the complex impedance contained in a two-column
FOF. RATNE, and NEWELEMENT are used to analyze rational function responses. The variable

'HOWRAT' has more information.

VARIABLE 'HOWRAT' IN MARTHAD WORKSPACE

The function 'RAT' fits a rational function of 'S' to the data in a two
column FOF. The function is dyadic, with the following syntax:

Z ^ 0. RAT FOF

'0' is normally a two element vector, with '0[1]' being the order of the
numerator, and '0[2]' being the order of the denominator. If 'O' is a
scalar or a single element vector, the value of '0' is used for both
numerator and denominator.

'FOF' must be a two column FOF (representing the real and imaginary parts
of an impedance), and must have at least r(+/0)-^2 frequencies.

The result 'Z' is a vector of length 5 + [total order of num. and den.).
The first two elements are just 'O', the order vector, the 3rd element is
'1' (the constant multiplier) , and the remaining elements are the
coefficients of the numerator polynomial, followed by the coefficients of
the denominator polynomial.

The functions 'RATNE' and 'NEWELEMENT' are used to analyze the response of
a rational function using MARTHA.

11.7 FOURIER TRANSFORM

The function 'FT' implements a Fourier transform for use with MARTHA. This is not a standard
FFT, and is slow, but has some flexibility not available with an FFT. 'HOWFT' contains more

information.

VARIABLE 'HOWFT' IN MARTHAD WORKSPACE

The function 'FT' is a Fourier Transform function that computes the time
response of a FOF with fairly arbitrarily specified time and frequency
points. Unlike a regular FFT, the frequency points do not have to be
equally spaced, or even in order. The time points the response is
computed for must be placed in the variable 'T', and can also be unevenly
spaced.

71

11.8 S-PLANE ANALYSIS OPTION

This uses the background option function 'OPT' to allow the analysis of MARTHA network
responses with inputs having both real and imaginary parts, i.e. signals off the usual j6) axis. The real
part of the frequency is Jissigned to the vector 'SIGMA', and the combined frequency array can be
examined using the function 'CF'. The variable 'HOWSPLANE' has the details.

VARIABLE 'HOWSPLANE' IN MARTHAD WORKSPACE

Using the S-Plane analysis option, the response of any MARTHA network can
be analyzed off of the normal jcd axis. The real part of the stimulus is
defined by the variable 'SIGMA', which must contain the same number of
points as the imaginary part, which is the normal 'F' vector. In
addition, the function 'OPT' from this workspace must be copied into the
active workspace. The complex stimulus array can be listed using the
function 'OF'. The convention for 'SIGMA' is that it includes the factor
2>^pi.

EXAMPLE:

)LOAD MARTHA
)COPY MARTHAD OPT CF

SIGMA-^(02) xl 2 R Define Real Part of complex freqs

PRINT CF DB S21 OF C 1E~3 fl Ask for analysis

CIRCUIT ANALYSIS BY MARTHA. 73oH 10/7/91 13:57

F RE CF IM CF DB S21

l.OOOEOOOO 6.283EOOO0 6.283E0000 "1.347S0OOO
2.000S0000 1.257E0001 1.257E0001 ~2.614£;0000

If you are not using the S-Plane analysis temporarily, execution speed will
improve if you remove the 'OPT' function from the workspace, and replace
it with a variable 'OPT' set to zero (OPT-^O) .

11.9 ACKNOWLEDGMENTS

Although there may have been contributors whose names have been lost to posterity, Prof. Paul
Penfield Jr. wrote most, if not all, of the MARTHAD functions.

72

12. LLRADIAL WORKSPACE

MARTHA RADIAL MICROSTRIP ELEMENT

12.1 RADUL MICROSTRIP ELEMENT

The function 'RADIAV, and the background functions 'JO', 'Jl', 'YO', 'Yl', and
'NEWELEMENT implement a MARTHA compatible 2-port model of a radial microstrip element. This
would ordinarily have been included in the MART HAD workspace, but it relies on a NEWELEMENT
function which is specific to RADIAL, and would interfere with the NEWELEMENT function used to
analyze and work with rational functions of'S' Qui). The variable 'HOWRADIAL' in the workspace
contains the details.

VARIABLE 'HOWRADIAL' IN RADIAL WORKSPACE

There are 6 functions used to implement the radial microstrip two-port:
'RADIAL', which is the main function, 'JO', 'Jl', 'YO', 'Yl' and
'NEWELEMENT', which are background functions used by 'RADIAL'.

'RADIAL' is a monadic function that behaves like a MARTHA element, and
expects an argument of length 5 containing (in order): er of substrate,
the angle (in degrees) of the line, the substrate thickness (in meters),
the radius at the input end, and the radius at the output end (both in
meters). The result is a MARTHA 2-port element which can be wired in with
any other MARTHA elements to form a network for analysis. If you want to
Implement a radial stub, use the MARTHA wiring function 'WTO' to create
a 1-port.

'JO', 'Jl', 'YO' and 'Yl' are Bessel functions of a real argument,
calculated using power-series approximations. They behave like monadic
APL scalar functions, and return a result in the same shape as the
argument. For 'JO' and 'Jl', the arguments may be positive or negative.
'YO' and 'Yl' require positive arguments. These 4 functions can be used
by themselves, are self-contained, and make no use of global variables.
They will work in either index origin.

'NEWELEMENT' is a special function that provide the 'hooks' into MARTHA
to allow 'RADIAL' to act like a MARTHA element. WARNING'.: 'NEWELEMENT'
is a function name that is not unique to RADIAL. If you encounter
problems, make sure you have the correct 'NEWELEMENT' for use with the
'RADIAL' function. For example, the analysis of rational functions
requires a different 'NEWELEMENT' function.

All of these functions must be present in the active workspace for 'RADIAL'
to work, and UI0=1 is required.

References:

'RADIAL': Ramo, Whinnery, and Van Duzer, page 453 ff

Bessel Functions: Abramowitz and Stegun, pp. 369-370

73

12.2 ACKNOWLEDGMENTS

Prof. Paul Penfield Jr. created the LLRADIAL functions.

74

13. LJURFCOIi WORKSPACE

INDUCTOR WINDING AND PARASITIC ANALYSIS

13.1 mTRODUCTION

This workspace contains a variety of functions for dealing with some of the more practical aspects
of LC filter design. There are several functions for calculating the value of small inductors for various
geometries, as well as functions for modeling various parasitic elements.

All of the functions have been documented to work with the 'EXPLAIlsr and 'SUMMARY'
functions. The functions are grouped below roughly according to use, and the details are listed using the
EXPLAIN function.

Although many of the functions in LLRFCOIL are designed to be used by themselves, some of
the functions require MARTHA. Loading LLRFCOIL automatically copies the LLMARTHA workspace,
which is assumed to be in Library 8. If you are using a different library for the LLAMA workspaces, you
will need to edit the argument of the COPY^^WS command in the STARt function as described in
Sections 1.8 and 2.2.

13.2 FUNCTIONS FOR SMALL INDUCTORS

There are three functions for calculating the value of different geometries of small inductors.
These are useful for calculating parasitics as well as designing small inductors.

Ind{H) *- BARL L,W,T{Inches) — Computes the Inductance of a Rect. Bar
Prompts user for inputs if pL,W,T ^ 3

L *- LOOP Radius,W(Inches) — Inductance of Single Turn uStrip Loop
Use mean radius of loop. Accurate for loop diameters < 1/10 wavelength
REF: 'Microwave Field-Effect Transistors—Theory, Design, And

Applications', Pengally, Research Studies Press Ltd., P. 426

L{nH) -^ Length{Inches) NIREL Dia{Inches) — Inductance of a Short Wire

13.3 SINGLE-LAYER-SOLENOID (SLS) INDUCTOR FUNCTIONS

This is one of the most common inductor constructions for RF filters. The function 'SLSOL'
calculates the standard handbook formula for such an inductor. Of more practical use is the function
'COIV, which uses AWG wire size and takes into account the thickness of the 'Nyleze' insulation
commonly used on modem magnet wire. A very convenient and repeatable method for winding such
coils is to use the shank of a numbered drill bit as a mandrel (form). The function 'DRILL' converts a
drill number into the appropriate diameter to be used by the COIL function. For example, you could
execute

COIL {DRILL 27),24,0,12

75

to get the inductance of a coil wound on a #27 drill bit. The function 'TABLEtCOlV uses the COIL

function to create a table of inductance values over a range of wire sizes and number of turns, all wound f

on a given sized form (drill).

L{nH) *- Nturns SLSOL ID,WireD — Computes Ind. of Single-Layer Solenoid Coil j
ID = Inside or form diameter {inches) '
WireD = Bare wire diameter {inches)
Nturns can be a vector j

L{H) " COIL Dia,W{ANG),Spc,Nturns — Computes Inductance of Nyleze SLS
Computes inductance of single-layer-solenoid coils made with Nyleze wire.
Dia is diameter of form in inches, N is wire size, Spc is wire spacing j
in inches. Nturns can be a vector of numbers for multiple coils. i
Function will prompt user if right argument is less than 4 in length.
Valid for wire sizes between MG 10 and 50. Requires the background •
functions 'coilb' and 'coilk'. \

Dia{Inches) - DRILL DrillNo. — Returns Diameter From Number Drill Size

TABLEi^COIL -- Creates a Table of Single-Layer-Solenoid Coils Using 'COIL' Fn J
Function Prompts User for All Inputs. Creates a table for a given
inner {form) diameter for various wire sizes and number of turns. ,

13.4 PARASITIC ANALYSIS FUNCTIONS

The remaining two functions can be used to model and analyze the effect of parasitics on your filter
components. The first function ' COILQ' is actually used to calculate the model elements of an inductor
measured in series with a 50 ohm transmission line on a network analyzer. The second function plots the ,

effect of parasitic inductance on the apparent value of a capacitor.

COILQ — Computes Q, C, L etc. of Parallel Resonator In Series W/50 Ohm Line
Prompts user for Center Freg. {MHz) , BW{MHz) and lowest S21 {dB) ',
Assumed MARTHA model is: WS (C Cl) P [L LI) S R Rl

RFCAP — Plots Effective Capacitance of a Capacitor Near Resonance \
Prompts user for Nominal Capacitance{pF) and Self-Resonance Freq{MHz) |

13.5 ACKNOWLEDGMENTS

Most of these functions were originally written by Dave Hodsdon.

76

14. LLDRflNGE WORKSPACE

DYNAMIC RANGE ANALYSIS AND PLOTTING

14.1 INTRODUCTION

The LLDRANGE workspace contains functions to tabulate and plot the dynamic range parameters
of an RF system. There are functions to enter and edit the various parameters for each stage of the
system, and functions to plot or print a detailed graph of the combined gain, noise performance, gain
compression, etc. in a format that makes aids further analysis and design.

There are 4 main functions: MAKEDATA, EDITDATA,DPLOT, and DPRINT. MAKEDATA
prompts the user to create an array of stage parameters and a vector of stage names. EDIT DAT A allows
editing the stage parameters of an existing system. DPLOT calculates the cascaded parameters and
displays a plot of the results along with tables. DPRINT uses the same inputs as DPLOT, but prints
directly to a printer without requiring a high resolution screen driver.

The results of running EXPLAIN on the four main functions are given below:

EXPLAIN 'MAKEDATA'
MAKEDATA 'Name' — Creates Input Data Matrix of Stage Parameters
Automatically forms input data variables to do dynamic range plots. If
'Name' is an empty vector, the user is prompted for a new system name, and
then for stage parameters. If 'Name' doesn't exist, it will be used for a
new system. If 'Name' already exists, the user will be prompted for data
to add stages after the last existing stage. The plot resolution can
currently support up to 12 stages.

EXPLAIN 'EDITDATA'
EDITDATA 'Name' — Allows Editing Stage Parameters of an Existing System
'Name' must be the name of a dynamic range analysis system, entered as a
character vector. If 'Name' is an empty vector, fn prompts for an existing
system name. The system parameters are displayed, and the user is prompted
first for the stage and then the parameter to be changed.

EXPLAIN 'DPLOT'
<User(s)> DPLOT 'Name' — Plots Dynamic Range Analysis Data to Screen
This function performs a number of dynamic range calculations for systems
of cascaded amps, mixers, filters, etc. The results are displayed in both
graphical and tabular form, including system noise figure, overall gain,
maximum input level etc. Different gains can be specified for signal and
noise. 'User{s)' is an optional user signal level in dBm. Op to 2 user
input levels can be specified for inclusion in the plot. 'Name' is the
name {entered as a string) of a 1 row by N column data matrix containing
the data for N stages:

Name[l;] = Noise Figure (dB)
Name[2;] = Signal Gain {dB)
Name[3;] = Output 2 Tone Third Order IM Intercept {dBm) *
Name[4;] = Output Signal 1 dB Gain Compression Point {dBm) *
Name[5;] = Noise Bandwidth {MHz)
Name[6;] = Noise Gain {dB)
Name[l;] = Output Noise 1 dB Gain Compression Point {dBm) *

77

* Any value greater than 100 dBm is considered infinite, and
the stage parameter will be left blank in the output table

The function also requires a global variable 'NameTYPE' containing
the labels for each stage. The required data variables can be
created or added to using the 'MAKEDATA' function, or the stage
parameters can be edited using the 'EDITDATA' function. Once a
screen plot is complete, typing <SHIFT>P exits to the text screen
and prints the plot. Pressing any other key exits without printing.

EXPLAIN 'DPRINT'
<User{s)> DPRINT 'Name' — Prints Dynamic Range Analysis N/0 Screen Display
This function is identical to DPLOT, only it sends the output directly to a
printer, without creating a screen display. This allows users without
supported video systems to create plots. For input and usage details,
run: EXPLAIN 'DPLOT'

14.2 GLOSSARY

Although most of the input and output terms are fairly common, some may be unfamiliar. A brief
description of the less common terms and how they are calculated is given below:

Input Terms:

Noise Gain: This is listed separately from the Signal Gain to allow for the effects of signal processing.
For example, averaging can be described as a stage with a Signal Gain of 0 dB, and a Noise Gain of -

10xLog(Navg)-

Output Noise 1 dB Gain Compression Point: Because noise has spikes which are much higher than the
average power, the 1 dB gain compression point will be significantly lower for noise than for a CW
signal. In the absence of more detailed information, a noise compression point -10 dB lower than the
signal compression point is a good rule of thumb for WGN.

Output Terms:

Spot Noise Figure: This is the standard cascaded-stage noise figure for the complete system, based on
the noise figure and noise gain of all of the stages.

Average Noise Figure: This is similar to the Spot Noise Figure, but it is normalized over the noise
bandwidth of the system. In a typical receiver design where the narrowest bandwidth is at the final
stage, the two noise figures are the same. However, if the stage that sets the noise bandwidth is not the
last stage, the average noise figure will increase because of the wider bandwidth noise contributed by

subsequent stages.

Maximum Wideband Input: This is equivalent to the Input Signal for 1 dB Gain Compression listed in
the output Summary, only it is calculated using noise gains and noise output compression points.

Stage Input Equivalent Noise Level: This is the total noise power (in the system noise bandwidth)
referred to the input of each stage based solely on the noise figure of that stage. It is NOT based on a
running calculation of noise figure of a given stage combined with subsequent stages.

78

14.3 DEMO PLOT

There are variables in the workspace to produce a demonstration plot. Figure 14.1 shows the result
of running: "35 DPLOT ' DEMO'. The boxes above the data for each stage allow the user to draw in
a symbol (amplifier, mixer, pad etc.) to provide a schematic representation of the system.

14.4 VDI PLOTTING

This workspace uses APL2000's VDI (Virtual Device Interface) graphics functions. This is only
available in APL2000's APL+PC or APL+DOS, not in APLSE. In order to get the high resolution
required by the detail in these plots, special video drivers are needed. The only graphics devices that are
currently supported are the ones based on the Tseng Labs ET4000 chip set. This includes the newer
ET6000 chips, which are backward compatible. The DPLOT function should NOT be used if you have
another type of video card. Fortunately, the print driver will work with any HP LaserJet compatible
printer. For a general description of VDI graphics and how to set up your computer to work with it, see

the variable TDIHELP'.

14.5 ACKNOWLEDGMENTS

The output format and analysis are largely based on a mainframe workspace written by David

Hodsdon.

79

a z:
M

PS o

o
l-J

M

z:
<c

KO
..-j ̂ ■v"< -^T •■, ■! ! ' !

ff^ \ "^ " ■ * \ \ ^: ">•
rv.
!H ^v! ^ ^ *» "

:
»H ' \ ^ ^ •-, : *
CO 7 r 't
in I'- r ; ■

CO ll' ;
<H

1 1

;' 1

N(: ;....(...,....^.. ■; .' "
■ ■ / : : :

. 1 / : :
■■ </ ':

',
■ { ' «

""+": "\\ ;
: \ •■* "

: : ;
• N. "^ ■ » : ;

" \Si : \' ** X > : : *
■ 1 ■' : : :

;| :
. (1 -

/ ' :
; : m ■

■*":/'
;

/ ' ; / ;

/■''
1 .-■ :

..... #•••>
?

■ *

\ l\ . .
..

.

; ■ i

*
 + ■■; "- ̂ ^'i :

"\'' ; x^^ *^ :
:^-. ^^ '■, :

: ■ v^ "^ '•i (:
1

: : 1
;

: : i
: : i

 i!....: .,,.,,,.. i.... 1i....,*...

M

en

(SI
CO

I

cs
\0

I

CD
CD

I

>JM::>W.-] >-<Z: one

3
pa

N
X

3 E
m

s
N
X s
E s

(33 ^n ^H ^n ro ^n ^i s
CL^LncDcscsaicsas

s
E >J
2S? ■cvmofocDfnn

CO M(sj ^m fs] CO w

^ CD ^ ^ OT3
Cd

bi PS Cd

(SCO s s s
ij

Pi^CO

ess SS

(u V^ S V M >J
OE

CO c Ell
jj «-1= •-E

U >;>jgcs SS
as SS *=§E«^

0 I—

CNN S'V COKE
CO c TH O"

»-l 1-3- ea
zjeowPSi-^
p. OHSt;
Ei^ i-H COP^S

ijj ^ci fn fci pn rci fQ "-E33l-^

E::>E0UH
l-HI-N l-N CS CS

a, SS S LOS SLD

«a>s s Lnss<f<
N iH S N 1

ro xa xin<c c ^^ «e*«(ni-i-
EME coco

SS CD S
SS SS ' + SK

t-1 • •
►J r-l^ S »H

S 1
Eb m
N

s s s s

.

mm s ins in in

MCOCOSNOOON
X 1 N'-CS 1 N

1 in 1
i: TH E E N

03 p3 pa p3 tX4 £1!^ ' 1
caeanoooE

SS s s
3SS BS (SJS S SN S S

NN SSN S S
O "ff"^ s ^ ■ ■ ■ • ■ . ■

1 S 1 j^s^s; r) (J^ 0^ 03
PJ m ^N VS
3 TH 1 1 »-i
P-.

SS SS ir II II 1 II M II
pstnin s m
w • •
,J 1 CD 1 E
B« n O = ^0 »-H

O t-i

w
^^j 1 y 1 IV1 r^ 1 1^.1 IV] ^vI PS
Uf UiJ UU UJ ^U U^ ^f' p..

E
O c^s in ins s m

O ^N 'H SN 1 CJ
19 vO
<c i-< E

CDS SS CS
O.SS s s I-"
c • • pa 3
CN n cd n & 1 PC E
Cd
pe; ■H HU
p< PSMPS Q

3b o E X
E cs Ch « !-•

npa "-W pa ea
K) ENOO U.C0.-9
opa c •-«EO_3
-.o pa az: E P^ ^ggeSSg

— z: - CU3 «: o .1-1 H-C5 ««
Eb i-> f-> z: pa cs u XOMCO ECS pa

«: 30 PSEU I.J3
MC50UMMW « CliCZZUU
CO COCOCO EI-B=3E'-'eOCO
•-> cs m CD "-•-• "-i COWP-CDX"'-'
C-i cu

coEEE eoco« —e
-<Eoa

ECO- OEEE

Figure 14.1. Dynamic range DEMO plot

80

15. RUFILSYN AND FRMRUFLT WORKSPACES

LC FILTER SYNTHESIS & MARTHA CONVERTER

15.1 INTRODUCTION

'RUFILSYN' is a PC APL compatible version of the Rutgers University FILTER workspace
[15.1]. Like LLFILTER, it also does lumped-element filter synthesis, but it can synthesize elliptical
filters and filters with arbitrary responses that the LLFILTER workspace cannot. The fiinctions in the
workspace have not been documented for use with the 'EXPLAIN" system, but there is an 85 page
manual. A limited number of copies of this manual are available, and more could be photocopied if
demand warrants it. RUFILSYN does not produce network descriptions directly compatible with
MARTHA, but the "FRMRUFLT workspace contains a conversion fiinction to fill this void.

15.2 ELLIPTICAL FILTER DESIGN EXAMPLE

The process for designing filters in RUFILSYN is a bit more complex than using the Lincoln
Laboratory functions. Its real strength is in designing complex filters with a fair amount of user
interaction, and little attention was paid to streamlining the user interface. Designing a filter requires first
calculating the poles and zeroes of the required transfer function. Using the results of this process, you
can then synthesize the component values. One nice feature is that RUFILSYN creates schematics of
the resulting filter through clever use of the APL character set. It was written as a stand-alone package,
and a plotting system is included for checking the resulting frequency response. Because of its
mainfi-ame heritage, the plotting system uses APL text characters and looks a bit crude by today's
standards. Below is an example session showing the design and analysis of a S^d order 50 MHz

bandwidth elliptical low-pass filter.

S22E^ELLIP

ENTER AMAXr AMIN, FP{END OF PASSBAND), FS{START OF STOPBAND)

Q:
.1 20 50E6 100E6

ENTER 1 FOR TRANSFORMED ELLIPTIC BANDPASS FILTER, 0 OTHERWISE

D:
0

ORDER OF THE ELLIPTIC FILTER, W= 3
REFLECTION ZEROS IN COMPLEX FORM {STORED IN RZERO):

0 0 0 4.4052E7

TRANSMISSION ZEROS IN COMPLEX FOFM {STORED IN TZERO) :
0 1.135£r8

ZETAF= "0.12464 (9.0433 DB)
ENTER 1 TO REALIZE THE FILTER, 0 TO EXIT FROM ELLIP

D:
1

•kirkAN ITERATIVE SOLUTION TO THE FELDTKELLER EQUATION FOLLOWS
THE NATURAL FREQUENCIES {OR REFLECTION ZEROS) IN COMPLEX FORM ARE:

81

~5.5838£7 0 ~1.9093£7 6.0895E7

USE FUNCTIONS "EL^PORTl SI SI P0RT2 S22" TO REALIZE THE FILTER
YOU NEED 1 FUNCTION S3 ; 0 FUNCTION S4

1 FUNCTION S5 S3; 0 FUNCTION S5 S4

ELE-PORTl S3 S5 S3 P0RT2 S22E

ENTER 0 IF THE LAST BRANCH SHOULD BE SHUNT, 1 IF IT IS IN SERIES

D:
0

ENTER LOAD CONDUCTANCE
D:

.02
ENTER FINITE NONZERO TRANSMISSION ZERO ASSOCIATE WITH EACH S5,
AND ENTER 0 ASSOCIATE WITH EACH SO, S3 OR S4
D:

0 1.135E8 0

ELEMENT VALUES ARE:

1 1
1 A A A A

1 1
2.00£;-002

1 1

1 1
5.70E~011

1 1 3

1 3 1.32E-011

1 1

=)

1 1

1 1
5.70£~011

1 1
1 A A A A 1 2.00E~002

TRAP FREQ.
l.49E~001 C,L 1.135£;000£

USE FUNCTION "RESP EL" TO ANALYSE THE FILTER IN VARIABLE EL
TO REALIZED THE FILTER WITH DIFFERENT CONFIGURATIONS USE FUNCTIONS

"EL^PORTl SI SI P0RT2 S22"

RESP ELE

ANALYSIS

ENTER FREQUENCY RANGE AND SPACING {E.G. 85,100,1) FOR PLOT

D:
0 300E6 lOES

82

FI GURE: THE MAGNITUDE OF S21 IN DB
\

-40.0 "30.0 -2C

F .00 .OOOEOOOOI 1
R 10000000.00 "2.880E-0021
E 20000000.00 -8.409f:-002|

Q 30000000.00 -9.357£-0021
U 40000000.00 -2.027E-002I
E 50000000.00 -1.000£-0011
N 60000000.00 -1.365E00001
C 70000000.00 -4.998E0000I
Y 80000000.00

90000000.00
-1.030E0001I
-1.645E0001I

100000000.00 -2.401E0001I •

110000000.00 -3.815E0001I •
120000000.00 -3.494E0001I •

130000000.00 -2.877E0001I •*
140000000.00 -2.639E0001I *

150000000.00 "2.520E00011 •

160000000.00 -2.455E0001I •

170000000.00 -2.421E00011 •

180000000.00 -2.405E0001I *

190000000.00 -2.401E0001I *

200000000.00 -2.405E0001I *

210000000.00 -2.414E0001I *

220000000.00 -2.426E00011 •

230000000.00 -2.441E0001I *

240000000.00 -2.458E0001I •

250000000.00 -2.477E0001I *
260000000.00 -2.496E0001I •

270000000.00 -2.516E0001I •

280000000.00 -2.536E0001I •

290000000.00 -2.557E0001I •

300000000.00 -2.577E0001I 1 •

"10.0 .0
I *

*

*

*
*

I I I

ENTER 1 FOR THE MAGNITUDE OF S21
2 FOR PHASE AND GROUP DELAY; 0 FOR THE END OF ANALYSIS

Q:
0

15.3 CONVERSION TO WaRTHa FORMAT

The workspace FRMRUFLT contains the function 'FROMFILTER' which allows converting the
filter descriptions from RUFILSYN into a MARTHA compatible form. The fundamental way that the
two programs model filters is a bit different, so a certain amount of user input is required. Once a filter is
designed using RUFILSYN, the results should be saved. FROMFILTER requires a number of
MARTHA functions, so both FROMFILTER and the filter network should be copied into a workspace
containing MARTHA before attempting the conversion process. FROMFILTER was written before the
advent of the EXPLAIN system, but there is a help variable 'HOWFROMFILTER' included in the
workspace:

83

VARIABLE 'HOWFROMFILTER' IN RUFILSYN WORKSPACE

This function converts filters designed using the Rutgers University
'FILTER' package into MARTHA form. The 'FILTER' package is in the
RUFILSYN workspace, and details of its usage are contained in the
manual: FILTER - An APL Filter Design Package, by F.C. Liu and T.G.
Marshall, Jr., 1977. The 'FROMFILTER' function must be executed in
a workspace containing MARTHA. The syntax is:

Net*-Left FROMFILTER Fltr

Where 'Fltr' is the filter as generated by the FILTER package, and
'Left' contains auxiliary information necessary in the conversion.
The result, 'Net', is either the MARTHA network itself, or, in cases
to be described, the name of a function which, upon execution,
produces this network.

'Fltr' is a A-column numerical matrix, with one row for each filter
section. Fltr[;l] is either 0, 3, 4, or 5, depending on the type of
section. Fltr[;2 3 4] are either ignored {for some sections) or are
element values. For a detailed description of this format, see pages
11 and 12 of■the FILTER program manual.

The network specified by this matrix is incomplete, in the sense that
both 'Fltr' and its dual are represented the same way in FILTER,
whereas in MARTHA they are not. During the conversion, a choice
between the two possible filters must be made. In addition, in
FILTER, the source and load resistances are included in the matrix,
whereas in MARTHA they are not included in the network definitions.
At times it may be useful to include the source and/or load
impedances in the MARTHA network definition, or sometimes a network
coming from the FILTER package may not have a source or load
specified. Therefore, an option is necessary to allow [but not
force) the setting of ZG and ZL in MARTHA. Finally, the desired
result may be a MARTHA network, or a function that can be executed to
produce the network, which can be displayed and/or modified. Thus
there are three conversion options that must be specified. These
are: (1) which of the two dual networks to produce; (2) whether
source and load impedances, if present, are to be set or included in
the network definition (or neither); and (3) whether to produce a
network or an APL function.

The variable 'Left' sets these options. It is a character vector
beginning with one of the four strings:

'LSE' OR 'LSH' OR 'RSE' OR 'RSH'

which stands for 'Left {or Right) Series {or Shunt)'. If 'LSE' is
specified, then the left most section will be treated as a series
section. Although four choices are possible, only two possible
network configurations exist. Thus if the number of sections is
even, the 'LSE' and 'RSH' are equivalent, whereas if there is an odd
number of sections, then 'LSE' and 'RSE' are equivalent. After the
three letter code, the following characters may optionally appear:
< > X [] Q or V. If '^' appears, it must be followed by a valid APL

84

function name. The result of the conversion will be the implicit
creation of a function by that name, and the explicit return of that
name. Otherwise, a network is created and returned directly.

If the deduced values for ZG and ZL are not to be set, and their
values are not to be part of the explicitly returned network, the
mode symbol '<' {for ZG) or '>' (for ZL) should be used. An
abbreviation for both '<' and '>' is ' ><' .

If the values for ZG and/or ZL are to be incorporated into the
explicitly returned network, and the variables ZG and ZL are not to
be set, the mode symbols '[' (for ZG) or '] '_ {for ZL) should be
used. An abbreviation for both '[' and '] ' is 'Q'.

If the values for ZG and ZL are to be set and not appear in the
network, no mode symbol is used. This is the default condition.
Note that if '[' appears then '<' is allowed but adds nothing;
similarly if ']' appears then '>' may also, but is not necessary.

If the mode symbol 'V appears and any of the mode symbols: < > x [
] OR U, is used to inhibit the setting of ZG and/or ZL, then the
function created will include a comment line setting the values of ZG
and/or ZL.

In all of these cases, the deduced value of ZG is the resistance of
the lossy part of the first section, if it is non-zero and the type
of the first section is 3 or A. If the first section is of type 0 or
5, or if the resistance or conductance is zero, then no setting of ZG
occurs. Thus a resistor of value 0.0000000001 Ohm sets ZG, but a
resistor of value 0 Ohm does not. A similar criterion is used on the
last section of the filter for ZL.

15.4 CONVERSION FROM MAINFRAME TO PC APL

The J?[7FILSyW workspace was originally written for use on mainframe computers, and required
extensive modifications to get it working with the PC APL. For the morbidly curious and anyone
attempting fiiture conversions, the gory details are detailed in the workspace. The latent expression,
DiX, runs the 'DESCRIBE' function, which displays the following:

WELCOME TO APL FILTER PACKAGE. FOR THE DETAILS, SEE MANUAL:
FILTER - An APL Filter Design Package, F.C. Liu and T.G. Marshall, Jr.

Rutgers University and David Sarnoff Research Center, 6/24/77

Modified By D.N. White to run under APL2QQ0 APL+PC
M.I.T. Lincoln Laboratory, 7/31/91

The changes made to allow operation under APL+PC should not generally
affect the use of the functions, but they are described below in case
of difficulties:

1) Replaced function calls: ' ibe 26' with 'ItDLC. ' ibe' was
a function used to replace the old 'I' {I-beam) system function.

85

2) Eliminated use of 101 QSVO stack processor in these functions:

PROTOTYPE - Now calls TRANSFORM and TOPBAND using optional
left arguments instead of using stack

TRANSFORM - Modified to accept an optional left argument of:
1st Element {FE), Transform Type, Zo, Fc
Also now calls BANDTRAN with optional left arguments
instead of stack.

BANDTRAN - Added optional elements to left argument. Left
arg. is now: 1st Element {FE), [Zo, Fc] (optional)

TOPBAND - Now accepts an optional left argument of: Zo, Fc

3) Modified READ function to eliminate references to CMS disk files,
and removed several lines of 'commented-out' code.

4) Modified ELMATRIX function to correct differences between PC
and Mainframe use of prompts with D. The Mainframe places
spaces in the result, and APL+PC echoes the prompt string.
The prompt string can be eliminated by using UARBIN lO

5) Adjusted spacing in DISPLAY and GRAPH to account for extra digit
in APL+PCs ? exponents. Also added branch labels to GRAPH.

The modified code makes use of 0, DLC, and DNC, all of which should
be supported in most standard APL's. The problem with □ appears to
be much more system dependent, and will have to be dealt with on a
case-by-case basis. ELMATRIX is the only function where this
construct appears to be used. Minor adjustments in output displays
may be required because of variations in f exponent length.

15.5 ACKNOWLEDGMENTS

The RUFILSYN package (under the name FILTER) is, of course, the work of F.C. Liu, and T.G.

Marshal, Jr.. The author of the FROMFILTER conversion function has unfortunately been lost to the

mists of time.

15.6 REFERENCES

15.1 F.C. Liu, and T.G. Marshal, Jr. ''FILTER - An APL Filter Design Package," Rutgers University

E.E. Dept., 1977

86

16. INDEX

KEY: fii = function, ws = workspace, var = variable

AWL(APLfh),9, 10, 11

QG Graphics, 19, 59

ULX{APL Latent Expression), 10, 11, 13, 85

1 dB Gain Compression, 77, 78

A

Accuracy, MSrJRIP, 31, 33

Active Low-Pass Filter, 49

ACTIVEFLT (APL fh), 49

ADF(APL fh),70,71

ADWiAPL fh), 70, 71

AGD(APL fh), 52,70, 71

ALLPASS (APL fh), 55

AMPLVST (APL fh), 61, 62, 63

AND (APL fh),22,26

APL Computer Language, 1

APL File Extensions, 4

APL Interpreters
APL*PLUS 11/386,3
APL*PLUS/PC, 2
APL+DOS, 3, 35, 79
APL+PC, 2, 35, 59, 79, 85, 86
APLSE, 2,3, 6, 7, 79
Speed vs. Other Languages, 2

APL Keyboard, 3

APL Language WWW Resources, 3

APL Libraries, 6

APL Newsgroup, comp.lang.apl, 3

'APL Notes' Book, 3

APL Run Time Interpreter, 59

APL Workspace, 4

APL2000 (Software Vendor), 2, 3, 4, 6,13,
17,18,19,35,59,79,85

APLSE (Special Edition), 2, 3, 6, 7, 79
Documentation, 3
Manual, 3, 81

Array Operations, 1

ASCIIGET (APL fh), 14

ASCIIOUT (APL fh), 14

AUTOSCALE (APL fh), 22, 23

AXES (APL fh), 15

B

Band-Pass Filter (see Filters, Band-Pass)

Band-Stop Filter (see Filters, Band-Stop)

BAi^L (APL fii), 75

Bessel Functions, 73

Bitmap Repair Function, 15

BOMEGAS (APL fh), 49

BPFILTER(APL fh), 43

BPGAUSS (APL fh), 43

BPXFMR (APL fh), 46, 50

Bryant, T.G., 29

BSFILTER (APL fh), 47

c
Capacitance Near Resonance, 76

Capacitive Impedance Divider, 44, 45

CF (APL fh), 72

Character Matrix-to-Vector Conversion, 17

87

Character Set, APL, 3

Character Vector/Matrix Functions, 17
M2V, 17
V2M, 17

Character Vector-to-Matrix Conversion, 17

COIL (APL fh), 75, 76

COILQiAPL fh),76

Combline Filter, 37
'HELP' Function, 37
ElementMatrix, 40, 41
Example, 39
Input Parameters, 38
Sample Output, 40

COMEGAS (APL fh), 49

Comment Removal Function, PDECOM, 14, 25

Comments
First Line, 5, 13
Public,4,5,9, 13, 14, 19,25
Removing Non-Public, 14,25
Use With EXPLAIN, 5

Comparing Workspaces, 12, 17

Complex Inputs to MARTHA Networks, 72

CONFIG.APL File, 6

COPYmS, 9, 10, 11, 27, 37, 43, 51, 61, 75

cpiAPL fh),26

CRYSTAL {APL fh), 48

Crystal Resonator Model, 48

cwriteiAPL fn), 23

D

Data Reduction Two-Ports, 69
Help Variable, 69
SDRT Function, 69, 70
YDRT Function, 69, 70
ZDRT Function, 69, 70

Date Functions
DATE, 17
WSDATE, 17

DEFAULT (APL fh), 19, 22, 23

Derivative w.r.t co, Approx., 70

Derivative w.r.t Frequency, Approx., 70

DIFF{APL fn), 12, 17

DIPLEXER (APL fh), 49

DOC {APL fh), 12, 17

Documentation Functions
EXPLAIN, 4, 9
SUMMARY, 4, 9, 14, 18, 24, 57, 61, 75
SUMMARY ALL, 4, 9, 18, 24

Documentation, DESCRIBE Variables, 5

Double Precision, 2

DPLOT {APL fn), 77, 78, 79

DPRINT {APL fn), 77, 78

DRILL {APL fh),76

Dugas, Douglas, 35

Dynamic Range Analysis, 77

E

EDIT DAT A {APL fh), 77, 78

efmt{APL fh), 17

ELLIP{APL fh), 81

Empty Vector, 6, 57

ENDCAP{APL fh),44,45

ENV {APL fh), 64

Exponential Format Function, efmt, 17

Exporting ASCII To APL, 14

Exporting S-Parameter (.S2P) Files, 15

DATE {APL fh), 17

FADE {APL fti), 71

FADWiAPL fh),71

FAGDiAPL fh),71

Fast Fourier Transform (FFT), 61, 64, 65, 66, 71

FFT {APL fti), 61, 64, 65, 66, 71

File Extensions, APL, 4

File Size, Workspace, Reducing, 9

Filters
Active Low-Pass, 49
Arbitrary response, 81
Background Functions, 44,45,46, 50
Band-Pass, 43, 44,45, 46, 51, 52, 54
Band-Stop, 47
BP Impedance Transforming, 46, 50
Capacitive Impedance Divider, 44, 45
Combline, 33, 37, 38, 39, 67
Diplexer, 49
Elliptic, 51, 52, 54
g-Code Prototype Values, 46, 50
High-Pass, 47
High-Side C Band-Pass, 44, 45
High-Side L Band-Pass, 45
High-Side L BP w/ Parasitics, 45,46
Impedance Xform, LC Tank, 44,45
LC, 43, 75
LC Band-Pass, 43,44,45, 46
LC Band-Stop, 47
LC Elliptic, 51, 52, 54
LC Gaussian Low-Pass, 43,48
LC High-Pass, 47
LC Low-Pass, 43,48
Low-Pass, 48,49, 50
Low-Pass Prototype, 50
Normalized k & q Values, 44, 45, 50

FIXBMPiAPL fh), 15

flags (APL var),25

FLUSHVARS (APL fn), 13

FOCOiAPL fh),65

Form-Feed Function, PFIFF, 17

FOSERiAPL fii),65

Fourier Series, 65

Fourier Transform (non-FFT), 71

Freeware, 2

Frequency Spectrum, 64

FRMRUFLT {APL ws), 81, 83

FROMFILTER {APL fh), 83, 84, 86

FT {APL fh), 71

Function Key, Printer Form-Feed, 17

G

g-Code Values For Filter Synthesis, 46, 50

GD {APL fh), 52, 53

getcr{APL fh), 40

get tap {APL fh), 40

ginit{APL fh), 19,25

GLABEL{APL fh), 23, 25

GLOBAL {APL fh), 12, 13, 17

Global Variable Locator, GLOBAL, 12, 13, 17

glqint {APL fh), 34

Graphics, APL UG, 19, 59

Graphics, VDI, 9, 79

Group Delay, 51,52,70

Group Delay, Approximate, 70

H

hd (APL var), 26, 61

HELPPLOT {APL ws), 19,27

History of LLAMA, 1

High-Pass Filter (see Filters,High-Pass)

Hodsdon,David,41,60, 66

HOWAGD {APL Help var), 70

89

HOWDRT(APL Help var), 69

HOWFROMFILTER (APL Help var), 83, 84

HOWFT {APL Help var), 71

HOWNODAL{APL Help var), 67

HOWRADIAL (APL Help var), 73

HOW RAT (APL Help var), 71

HOWS PLANE (APL Help var), 72

HOWSTRIPLINE (APL Help var), 68, 69

HPFILTER(APL fh), 47

HSCBPF(APL fh),44,45

HSCBPFNET (APL fii), 44

HSLBPFiAPL fii),45

HSLCBPF(APL fh), 45, 46

I

IBM, 1,59

IF Band, 57, 58

IFAMPVST (APL fh), 61,62

IFFTiAPL fh), 61,66

Impedance Divider, Capacitive, 44, 45

Impedance Transform, LC Tank, 44, 45

Impedance Transforming BP Filter, 46, 50

Impedances, Normalizing, 28

Importing ASCII To APL, 14

IMPULSE (APL fh), 61, 62

Index Origin (DlO), 73

Inductance
Microstrip Loop, 75
Rectangular Bar, 75
Single-Layer Solenoid, 75, 76

Inductor Winding, 75
Nyleze Wire, 76

Inductor, Tapped, 49

in±t(APL fti), 59

Input Parameter Checking, 5

Interpreted vs. Compiled Languages, 2

Inverse FFT, 66

J

JO (APL fo), 73

Jl (APL fh), 73

K

k & q Values For Filter Synthesis, 44, 45, 50

Keyboard, APL, 3

KLAMSTRIP(APL fh), 30

kqvalues (APL fh), 44, 45, 50

L

Latent Expression (ULX), 10, 11, 13, 85

LC Circuit Models, 28

LC Tank Impedance Transform, 44, 45

LEAVE (APL fh), 9, 10, 11, 17, 27

Libraries, APL, 6

Library 8 (LLAMA Directory), 7, 10, 12,27, 37,
43,51,61,75

LIBS.APL Library File, 6

Linearity, Phase, 51, 53

lines (APL var), 2, 25

Listing Variables, 13

LISTVARS (APL fh), 13

Liu, F.C., 84, 85, 86

LLAMA And Library 8, 7, 10, 12, 27, 37, 43, 51,
61,75

LLAPLSE.ZIP File, 3, 6

LLCOMBFL (APL ws), 29, 33, 37, 67

90

LLDRANGE (API ws), 77

LLFILTER (APL ws), 11,43, 48, 49, 50, 81

LLMARTHAiAPL ws), 9, 10, 11, 13,27,28,
37,40,43,51,61,75

LLMIXER (APL ws), 57, 59

LLMSDIM{APL ws), 4, 29, 34

LLPHASE{APL ws), 51

LLPLOT (APL ws), 10, 11, 14, 19, 25

LLRADIAL {APL ws), 73

LLRFCOIL (APL ws), 75

LLTIME (APL ws), 61

LLUTILTY (APL ws), 9, 12, 15, 17, 25, 27

Local Oscillator, 57, 58, 59

Locating Strings, WHEREIS Function, 14, 17

Locked Functions, 3

LOOP (APL fh),75

Low-Pass Filters (see Filters, Low-Pass)

LPFILTER(APL fh), 48

LPGAUSS (APL fn),43,48

LTRANS (APL fh), 44, 45

M

M2V(APL fh), 17

Mainframe Computers, 1, 2, 7, 17, 19, 29,30,
31,34,41,60,81,85

Mainfirame Conversion, 85

MAKEDATA (APL fh), 77, 78

mark (APL fh),20,21

Marshall, T. G., Jr., 85

MARTHA Circuit Analysis Package, 1,2
Fo ± A Freq. Sweep, 27
Help Variable, 27
Lincoln Lab Version (LLAMA), 9,10,11, 13,

27,28,37,40,43,51,61,75

MARTHA Circuit Analysis Package (cont'd)
Linear Freq. Sweep, 27
Log Freq. Sweep, 27
Normalizing Impedances, 28

MARTHA Format, 83

MART HAD (APL ws), 67, 69, 70, 71, 72, 73

MARTHAP (APL ws), 19,25, 27

Maximum Wideband Input, 78

MEAStT(APL fn), 14, 17

Memory Requirements, MSTRIP, 35

mgreen(APL fh), 35

Microstrip
Coupled-Line Synthesis, 30
Coupling, KL, 30
Cover Height, 29, 32
Even-Mode Impedance, 29, 30, 31, 33
Odd-Mode Impedance, 29, 30, 31, 33
Radial Element, 73
Substrate, 29, 30, 32, 37, 38, 73
Topology for MSTRIP, 30

Microstrip Filters, Combline, 37

Microstrip Lines, 29

Mixer Spur Analysis, 57

MIXSPUR (APL fh), 57, 58, 59, 60

MIXSPUR (DOS Program), 59

Model
Crystal Resonator, 48
SAW Resonator, 48

Modeling
Inductor w/ Parasitics, 76
Parallel RC, 28
Parallel RX, 28

MSTRIP (APL fh), 29, 30, 31, 32, 33, 34, 35,
37
Accuracy, 31, 33
Coupled-Line Sjmthesis, 30
Coupling, KL, 30
Even-Mode Impedance, 29, 30, 31, 33

91

MSTRIP(APL fii) (cont'd)
G Parameter, 31, 32, 33, 34, 35
INT Parameter, 31, 32, 33, 34, 35
^Parameter, 31, 32, 33, 34, 35
Memory Requirements, 35
Odd-Mode Impedance, 29, 30, 31, 33
Speed, 34, 35
SubstrateTopology, 30

MSTRIP FORTRAN Program, 29, 32, 33, 35,
36

N

Name List Function, ANL, 9, 10, 11

Native (DOS) File Functions, 14
Exporting ASCII, 14
Exporting S-Parameters, 15
Importing ASCII, 14

NEWELEMENT (APL fh), 71, 73

Newsgroup, APL, comp.Iang.apl, 3

NL2Awsname (APL var), 10, 11

iVL3 Awsname (APL var), 10, 11

Nodal Wiring Functions, 67
Help Variable, 67

Noise Figure, 77, 78

Noise Gain, 78

Normalizing Impedances, 28

o
of {APL var), 26

OFF (APL var), 6,22, 23, 24

ON {APL var), 6,22, 23, 24

OPT {APL fh), 72

Pad, Pi Type, 28

Pad, Tee Type, 28

Parameter Checking, 5

Parasitics
Capacitor, 76
High-Side L BP Filter, 45, 46
Inductor, 76

PDECOM{APL fh), 14, 25

Penfield, Prof. Paul, Jr., 1, 7, 12,17, 61, 66, 72,
74

PF1FF{APL fh), 17

Phase Compensation, All-Pass, 55

Phase Distortion, 51, 53
Elliptic Filters, 51

Phase Linearity, 51, 53

Phase, Unwrapping, 53

PHASNL {APL fh), 53

PHUNWRAP {APL fh), 53

Pi Attenuator, 28

PLOT {APL fh), 19, 22, 23, 24, 25, 26, 65

PLOTSEQ {APL fh), 20, 23, 25

plot spur {APL fh), 59

Plotting
A AND B, 22, 26
A VS B, 26
Adding Text, 23
APLCharacter, 27, 81
Autoscale, 19, 22, 23, 25
Customizing, 25
Grids, 24
Hardcopy, 21, 57
Help Variable, 19, 27
Isolated Points, 20, 23, 25
Labeling w/ Mouse, 21
Line Types, 20, 23, 25
Linear XY, 19
Log X, 19,26
Log Y, 19,26
Log-Log, 19, 26
Manual Scaling, 23
Marking v// Mouse, 21
Markers, 20

i
i !

92

Plotting (cont'd)
MARTHA, 19, 25, 27
MARTHA Labels, 26
Mixer Spurs, 57
Plot Placement, 23
Restoring Defaults, 22
Restoring Display Parameters, 23
Saving Memory, 25
Smith Charts, 26
Titles, 24
X-Axis Labels, 24
Y-Axis Labels, 24

POINTS (APL fh), 20,23, 25

print {APL fh), 19,25

Printed Listing of Functions & Variables, 12

Printed Listing of Workspace, 12, 17

Printer Form-Feed Function, PFIFF, 17

Printing Plots, 21, 57

PRINTL (APL fh), 12

Programming Conventions, 5, 57

pro to {APL fh), 43,47, 48, 50

pro tog (APL fh),46, 50

ptsiAPL var),25

Public Comments, 4, 5, 9, 13, 14, 19,25

Q

Q of Inductors, 45,46,76

R

RADIAL (APL fh), 73

Radial Microstrip Element, 73

Radial Stub, 73

RAT (APL fh), 71

RATNE(APL fh),71

RDE (APL fh), 67

REAL (APL fh), 63

Removing Comments, 14, 25

RESET (APL fh), 13

RESP (APL fh), 82

RESTORE (APL fh), 20, 23, 25

RF Band, 57, 58

RFCAP (APL fh), 76

RUFILSYN(APL ws), 81, 83, 84, 85, 86

Run-Time APL Interpreter, 59

Rutgers University, 81, 84, 85

S

S A PAR AM (APL fh), 15

SAW Resonator Model, 48

SAWRESONATOR(APL fh), 48

Schematic, APL Character, 81

SORT (APL fh), 69, 70

SET (APL fh), 22,23,24

Setting Up APLSE
Configuration File, 6
Libraries, 6

Skipping Mixer Spurs, 58, 60

SKIPSPUR (APL fh), 57, 58, 59

SLSOL (APL fh), 75, 76

SMITH (APL fh),26

Smith Chart, Plotting, 26

S-Parameters, Exportmg, 15

SPECTRUM (APL fh), 62, 64

Speed, MSTRIP, 34,35

S-Plane Analysis, 72

Spurs, Mixer, 57, 58, 59, 60

Stage Input Noise Level, 78

STARt (APL fh), 37,43, 51, 61, 75

Starttip Function, 37, 43, 51, 61, 75

93

Stevens, Mark, 26

Stop-Band Frequency, 49

STRIPLINE (APL fh), 68, 69

Stripline Element, 68
Help Variable, 68, 69

SUMMARY (APL fh), 4, 9, 14, 18, 24, 57, 61,
75

SUMMARY ALL (APL fh), 4, 9, 18, 24

Symbol Table, 13
Clearing, 13
'Full'(Error Message), 13
RESET Utility, 13

Synthesis vs. Analysis, 2

TABLE^COIL (APL fh), 76

TAME (APL var), 62, 64

rAPL(APL fh),49

Tapped Inductor, 49

Tee Attenuator, 28

TEECIJ(APL fh),44,45

Time Domain Analysis, 61
Baseband Response, 61
Envelope, 62
IF Response, 61
Imaginary Part, 62
Input Waveform, 61
Magnitude w/Sign, 62
Output Modifiers, 62
Real Part, 62

Timing Function, MEASAT, 14

TITLEt (APL var), 24

Two-Ports, Data Reduction, 69

U

University of Waterloo APL Web Site, 3

Unwrapping Phase, 53

Usenet APL Newsgroup, 3

Utility Functions
ANL,9, 10, 11
ASCIIOUT, 14
COPYt^WS, 9, 10, 11,27, 37, 43, 51, 61, 75

DATE, 17
DIFF, 12, 17
DOC, 12, 17

efmt, 17
EXPLAIN, 4, 9
FIXBMP, 15
FLUSHVARS, 13
GLOBAL, 12, 13, 17
LEAV£,9, 10, 11,17,27

LISTVARS, 13
M2V, 17
MEASAT, 14
PDECOM, 14, 25
PFIFF, 17
PRINTL, 12
RESET, 13
SAPARAM, 15
SUMMARY, 4, 9, 14, 18,24, 57, 61, 75

SUMMARY ALL, 4, 9, 18, 24
V2M, 17
VERLIST, 12, 13
WHEREIS, 14, 17
IVSDATE, 17

\/2M(APL fh), 17

Variable Cleanup Function, FLUSHVARS, 13

Variable Listing Function, LISTVARS, 13

VDI Graphics, 9, 79

Vector, Empty, 6, 57

VERLIST (APL fh), 12, 13

Version Listing Function, 12, 13

VIEWPORT (APL fh), 23,24, 25

VS(APL fn),26

vw(APL var), 25

94

' 1

w Workspace, APL, 4

WA {APL fh), 67,68 WSDATE {APL fh), 17

Weigang, Jim, 3 WSFROMZ {APL fh), 30

Weiss, J.A, 29 X
WF {APL fh), 67, 68 Xi^ LABEL {APL var), 24

WHEREIS {APL fh), 14, 17 XGRID{APL fn),24

J WINDOW {APL fh),23 XLOGPLOT {APL fh), 19, 26

Windows Bitmap Repair Function, 15 XY LOG PLOT {APL fh), 19, 26
=> WIREL{APL fn),75

Workspace

xytic{APL var), 25

Comparison Function, DIFF, 12, 17 Y

'

Listing Function, DOC, 12, 17
StringLocatoT, WHEREIS, 14, 17

Workspace Copying System, 9, 10, 11, 17, 27,
37,43,51,61,75

YALABEL {APL var), 24

YO {APL fn), 73

Yl {APL fh), 73

, Function List, 10, 11 YDEr {APL fn), 69, 70
Name Listing Function, AWL, 9, 10, 11
Setting DLX, 10

YGJRID(APL fn),24

Setup, 10 Y LOG PLOT {APL fh), 19, 26
Startup Function, 37, 43, 51, 61, 75
VariableList, 10, 11 z

Workspace Date, 17 ZDKr (APL fh), 69, 70

Workspace File Size, Reducing, 9 ZFROMKL{APL fn), 30

Workspace Maintenance Functions Zoe, Even-Mode Impedance, 29, 30, 31, 33

DIFF, 12, 17
DOC, 12, 17

Zoo, Odd-Mode Impedance, 29, 30, 31, 33

FLUSHVARS, 13
GLOBAL, 12, 13, 17
LISTVARS, 13
PDECOM, 14, 25
VERLIST, 12, 13

95

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden lor Ihis coliection of inlormalion is estimated to average 1 hour per response, including ttie time for reviewing instructions, searctiing existing data sources, gathering and maintaining the data needed,
and completing and reviewing the coliection of inlormalion. Send comments regarding this burden estimate or any other aspect of this collection of information. Including suggestions lor reducing this burden, to Washington
Headquarters Services, Directorate for Inlormatbn Operations and Reports, 1215 JeHerson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-OieB), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
1 December 2003

3. REPORT TYPE AND DATES COVERED
Technical Report

4. TITLE AND SUBTITLE

LLAMA (Lincoln LaboraloryAdvanced MARTHA Applications) Software Manual

5. FUNDING NUMBERS

C—F19628-00-C-0002
6. AUTHOR(S)

D.W. White

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Trincoln Laboratory, MIT

244 Wood Street
Lexington, MA 02420-9108

8. PERFORMING ORGANIZATION
REPORT NUMBER

TR-1088

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force ESC/XPK
5 Eglin Street

HanscomAFB, MA 01731

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-2003-056

11.SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT {Maximum 200 words)

For the past 25 years or more, a number of staff members at MIT Lincoln Laboratory have made extensive use of the APL
computer language to solve a variety of problems, primarily in the area of radio frequency and microwave circuit design. This
was aided and inspired by the availability of the MARTHA software package, which is a collection of APL-based circuit analysis
functions developed by Professor Paul Penfield Jr. at MIT.

The Lincoln Laboratory Advanced MARTHA Applications (or LLAMA for short) is a set of 15 workspaces (a collection
of APL functions) developed primarily in conjunction with MARTHA. Many of the workspaces are an extension of MARTHA,
and allow the use of a new circuit elements or new types of analysis. A number of workspaces are devoted to filter synthesis,
using both lumped elements and coupled microstrip transmission lines. Other workspaces are aimed toward RF system design,
including mixer-spur and dynamic-range analysis.

This manual is intended to provide more formal documentation for this resource than has previously been available. It is
shoped that it will allow new users to quickly make use of all that APL and MARTHA have to offer, as well as providing a concise,
well-indexed reference for the more experienced user.

14. SUBJECT TERMS 15. NUMBER OF PAGES
107

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

Same as Report

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by AMSI Std. 239-18
298-102

